Reliable Optimization of Arbitrary Functions over Quantum Measurements
Abstract
:1. Introduction
2. Function Optimization
Algorithm 1: DG algorithm |
Algorithm 2: APG algorithm |
3. Applications
3.1. Convex Functions
3.1.1. One Qubit
3.1.2. One Qutrit
3.1.3. Two Qubits
3.1.4. Two Qutrits
3.2. Nonconvex Functions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517. [Google Scholar] [CrossRef] [Green Version]
- Grant, M.C.; Boyd, S.P. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control; Springer: London, UK, 2008; pp. 95–110. [Google Scholar]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization. IEEE Trans. Automat. Contr. 2006, 51, 1859. [Google Scholar]
- Shang, J.; Zhang, Z.; Ng, H.K. Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 2017, 95, 062336. [Google Scholar] [CrossRef] [Green Version]
- Brierley, S.; Navascues, M.; Vertesi, T. Convex separation from convex optimization for large-scale problems. arXiv 2016, arXiv:1609.05011. [Google Scholar]
- Gilbert, E.G. An iterative procedure for computing the minimum of a quadratic form on a convex set. SIAM J. Control. Optim. 1966, 4, 61–80. [Google Scholar] [CrossRef]
- Montina, A.; Wolf, S. Can non-local correlations be discriminated in polynomial time? arXiv 2016, arXiv:1609.06269. [Google Scholar]
- Shang, J.; Gühne, O. Convex optimization over classes of multiparticle entanglement. Phys. Rev. Lett. 2018, 120, 050506. [Google Scholar] [CrossRef] [Green Version]
- Kyrillidis, A.; Kalev, A.; Park, D.; Bhojanapalli, S.; Caramanis, C.; Sanghavi, S. Provable compressed sensing quantum state tomography via non-convex methods. NPJ Quantum Inf. 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Smania, M.; Kleinmann, M.; Cabello, A.; Bourennane, M. Avoiding apparent signaling in Bell tests for quantitative applications. arXiv 2018, arXiv:1801.05739. [Google Scholar]
- Becker, S.R.; Candès, E.J.; Grant, M.C. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 2011, 3, 165–218. [Google Scholar] [CrossRef]
- Kleinmann, M.; Cabello, A. Quantum correlations are stronger than all nonsignaling correlations produced by n-outcome measurements. Phys. Rev. Lett. 2016, 117, 150401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinmann, M.; Vértesi, T.; Cabello, A. Proposed experiment to test fundamentally binary theories. Phys. Rev. A 2017, 96, 032104. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.M.; Liu, B.H.; Guo, Y.; Xiang, G.Y.; Huang, Y.F.; Li, C.F.; Guo, G.C.; Kleinmann, M.; Vértesi, T.; Cabello, A. Observation of stronger-than-binary correlations with entangled photonic qutrits. Phys. Rev. Lett. 2018, 120, 180402. [Google Scholar] [CrossRef]
- Cramer, M.; Plenio, M.B.; Flammia, S.T.; Somma, R.; Gross, D.; Bartlett, S.D.; Landon-Cardinal, O.; Poulin, D.; Liu, Y.K. Efficient quantum state tomography. Nat. Commun. 2010, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torlai, G.; Mazzola, G.; Carrasquilla, J.; Troyer, M.; Melko, R.; Carleo, G. Neural-network quantum state tomography. Nat. Phys. 2018, 14, 447–450. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.; Liu, Y.K.; Flammia, S.T.; Becker, S.; Eisert, J. Quantum state tomography via compressed sensing. Phys. Rev. Lett. 2010, 105, 150401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohseni, M.; Rezakhani, A.T.; Lidar, D.A. Quantum-process tomography: Resource analysis of different strategies. Phys. Rev. A 2008, 77, 032322. [Google Scholar] [CrossRef] [Green Version]
- Altepeter, J.B.; Branning, D.; Jeffrey, E.; Wei, T.; Kwiat, P.G.; Thew, R.T.; O’Brien, J.L.; Nielsen, M.A.; White, A.G. Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 2003, 90, 193601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.L.; Pryde, G.; Gilchrist, A.; James, D.; Langford, N.K.; Ralph, T.; White, A. Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 2004, 93, 080502. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, M.; Borrelli, E.M.; García-Pérez, G.; Rossi, M.A.; Zimborás, Z.; Cavalcanti, D. Semidefinite programming for self-consistent quantum measurement tomography. arXiv 2022, arXiv:2212.10262. [Google Scholar]
- Zhang, A.; Xie, J.; Xu, H.; Zheng, K.; Zhang, H.; Poon, Y.T.; Vedral, V.; Zhang, L. Experimental self-characterization of quantum measurements. Phys. Rev. Lett. 2020, 124, 040402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, C.M.; Zhang, L.; Coldenstrodt-Ronge, H.; Donati, G.; Dorenbos, S.N.; Zwiller, V.; Walmsley, I.A.; Hadfield, R.H. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths. Opt. Express 2013, 21, 893–902. [Google Scholar] [CrossRef] [Green Version]
- D’Ariano, G.M.; Maccone, L.; Presti, P.L. Quantum calibration of measurement instrumentation. Phys. Rev. Lett. 2004, 93, 250407. [Google Scholar] [CrossRef] [PubMed]
- Coldenstrodt-Ronge, H.B.; Lundeen, J.S.; Pregnell, K.L.; Feito, A.; Smith, B.J.; Mauerer, W.; Silberhorn, C.; Eisert, J.; Plenio, M.B.; Walmsley, I.A. A proposed testbed for detector tomography. J. Mod. Opt. 2009, 56, 432–441. [Google Scholar] [CrossRef]
- Fano, U. Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 1957, 29, 74. [Google Scholar] [CrossRef]
- Fiurášek, J. Maximum-likelihood estimation of quantum measurement. Phys. Rev. A 2001, 64, 024102. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Tang, J.F.; Shang, J.; Zhu, H.; Li, J.; Yuan, Y.; Wu, K.D.; Xiang, G.Y.; Li, C.F.; Guo, G.C. Deterministic realization of collective measurements via photonic quantum walks. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Shang, J. Reliable Optimization of Arbitrary Functions over Quantum Measurements. Entropy 2023, 25, 358. https://doi.org/10.3390/e25020358
Luo J, Shang J. Reliable Optimization of Arbitrary Functions over Quantum Measurements. Entropy. 2023; 25(2):358. https://doi.org/10.3390/e25020358
Chicago/Turabian StyleLuo, Jing, and Jiangwei Shang. 2023. "Reliable Optimization of Arbitrary Functions over Quantum Measurements" Entropy 25, no. 2: 358. https://doi.org/10.3390/e25020358
APA StyleLuo, J., & Shang, J. (2023). Reliable Optimization of Arbitrary Functions over Quantum Measurements. Entropy, 25(2), 358. https://doi.org/10.3390/e25020358