Dynamic Multiscale Information Spillover among Crude Oil Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The Dynamic Information Spillover Network
2.2.2. Measures of Spillovers across Oil Prices
- 1.
- Measure for a single oil series
- 2.
- Measure for an oil system
3. Results
3.1. Dynamic Structure of an Oil Series
3.2. Dynamic Structure of the Whole Oil System
4. Conclusions and Discussions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhao, Y.; Zhang, W.; Gong, X.; Wang, C. A novel method for online real-time forecasting of crude oil price. Appl. Energy 2021, 303, 117588. [Google Scholar] [CrossRef]
- Hung, N.T. Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak. Resour. Policy 2021, 73, 102236. [Google Scholar] [CrossRef]
- Benedetto, F.; Mastroeni, L.; Quaresima, G.; Vellucci, P. Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis. Energy Econ. 2020, 89, 104815. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Wei, G.; Bai, L.; Wei, Y.; Liang, C. Return connectedness among commodity and financial assets during the COVID-19 pandemic: Evidence from China and the US. Resour. Policy 2021, 73, 102166. [Google Scholar] [CrossRef]
- Ji, Q.; Fan, Y. Evolution of the world crude oil market integration: A graph theory analysis. Energy Econ. 2016, 53, 90–100. [Google Scholar] [CrossRef]
- An, S.; Gao, X.; An, H.; An, F.; Sun, Q.; Liu, S. Windowed volatility spillover effects among crude oil prices. Energy 2020, 200, 117521. [Google Scholar] [CrossRef]
- Liao, J.; Zhu, X.; Chen, J. Dynamic spillovers across oil, gold and stock markets in the presence of major public health emergencies. Int. Rev. Financ. Anal. 2021, 77, 101822. [Google Scholar] [CrossRef]
- Mensi, W.; Vo, X.V.; Kang, S.H. COVID-19 pandemic’s impact on intraday volatility spillover between oil, gold, and stock markets. Econ. Anal. 2022, 74, 702–715. [Google Scholar] [CrossRef]
- Ji, Q.; Liu, B.; Zhao, W.; Fan, Y. Modelling dynamic dependence and risk spillover between all oil price shocks and stock market returns in the BRICS. Int. Rev. Financ. Anal. 2020, 68, 101238. [Google Scholar] [CrossRef]
- Huang, W.; Wu, M. Are spillover effects between oil and gold prices asymmetric? Evidence from the COVID-19 pandemic. Energy Res. Lett. 2021, 2, 28127. [Google Scholar] [CrossRef]
- Giudici, P.; Leach, T.; Pagnottoni, P. Libra or Librae? Basket based stablecoins to mitigate foreign exchange volatility spillovers. Financ. Res. Lett. 2022, 44, 102054. [Google Scholar] [CrossRef]
- Huang, S.; An, H.; Wen, S.; An, F. Revisiting driving factors of oil price shocks across time scales. Energy 2017, 139, 617–629. [Google Scholar] [CrossRef]
- Yu, L.; Li, J.; Tang, L.; Wang, S. Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach. Energy Econ. 2015, 51, 300–311. [Google Scholar] [CrossRef]
- Conlon, T.; Corbet, S.; McGee, R.J. Inflation and cryptocurrencies revisited: A time-scale analysis. Econ. Lett. 2021, 206, 109996. [Google Scholar] [CrossRef]
- Kuang, P. Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales. Phys. A Stat. Mech. Its Appl. 2021, 577, 126068. [Google Scholar] [CrossRef]
- Wen, F.; Liu, Z.; Dai, Z.; He, S.; Liu, W. Multi-scale risk contagion among international oil market, Chinese commodity market and Chinese stock market: A MODWT-Vine quantile regression approach. Energy Econ. 2022, 109, 105957. [Google Scholar] [CrossRef]
- Mastroeni, L.; Mazzoccoli, A.; Quaresima, G.; Velluccia, P. Wavelet Analysis and Energy-Based Measures for Oil-Food Price Relationship as a Footprint of Financialisation Effect. Resour. Policy 2022, 77, 102692. [Google Scholar] [CrossRef]
- Benhmad, F. Modeling nonlinear Granger causality between the oil price and US dollar: A wavelet based approach. Econ. Model. 2012, 29, 1505–1514. [Google Scholar] [CrossRef]
- Rajaee, T.; Shahabi, A. Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters. Arab. J. Geosci. 2016, 9, 176. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000; Volume 4. [Google Scholar]
- Zhu, L.; Wang, Y.; Fan, Q. MODWT-ARMA model for time series prediction. Appl. Math. Model. 2014, 38, 1859–1865. [Google Scholar] [CrossRef]
- Dahl, R.E.; Oglend, A.; Yahya, M. Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture. J. Commod. Mark. 2020, 20, 100111. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Iqbal, N.; Bouri, E.; Grebinevych, O.; Roubaud, D. Modelling extreme risk spillovers in the commodity markets around crisis periods including COVID19. Ann. Oper. Res. 2022, 1–30. [Google Scholar] [CrossRef]
- Sanhedrai, H.; Gao, J.; Bashan, A.; Schwartz, M.; Havlin, S.; Barzel, B. Reviving a failed network through microscopic interventions. Nat. Phys. 2022, 18, 338–349. [Google Scholar] [CrossRef]
- Barabási, A.-L. Network science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120375. [Google Scholar] [CrossRef]
- Li, Y.; Li, J. Multi-class dynamic network traffic flow propagation model with physical queues. Front. Eng. Manag. 2017, 4, 399–407. [Google Scholar] [CrossRef]
- Vattai, Z.A.; Mályusz, L. Negative weights in network time model. Front. Eng. Manag. 2022, 9, 268–280. [Google Scholar] [CrossRef]
- Canh, N.P.; Wongchoti, U.; Thanh, S.D.; Thong, N.T. Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model. Financ. Res. Lett. 2019, 29, 90–100. [Google Scholar] [CrossRef]
- Medina, A.G.; Chaudary, J.B.H. Network Analysis of Multivariate Transfer Entropy of Cryptocurrencies in Times of Turbulence. Energy 2020, 22, 760. [Google Scholar]
- Fan, H.; Liu, R. Research on Financial Systemic Risk in ASEAN Region. Entropy 2021, 23, 1131. [Google Scholar] [CrossRef]
- Dor, A.B.; Florig, S.; Guan, J.; Zengz, X. Beta Instability and Implications for Hedging Systematic Risk: Takeaways from the COVID-19 Crisis. J. Portf. Manag. 2021, 47, 139–155. [Google Scholar] [CrossRef]
- Barrat, A.; Barthelemy, M.; Vespignani, A. Modeling the evolution of weighted networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2004, 70, 066149. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, M.; Tian, L.; Zhen, Z. The measurement of China’s consumer market development based on CPI data. Phys. A Stat. Mech. Its Appl. 2018, 490, 664–680. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Oros, C.; Albulescu, C.T.J.E.M. Revisiting the inflation–output gap relationship for France using a wavelet transform approach. Econ. Model. 2014, 37, 464–475. [Google Scholar] [CrossRef]
- Said, S.E.; Dickey, D.A. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Pagnottoni, P.; Spelta, A.; Pecora, N.; Flori, A.; Pammolli, F. Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets. Phys. A Stat. Mech. Its Appl. 2021, 582, 126240. [Google Scholar] [CrossRef]
- So, M.K.; Chu, A.M.; Chan, T.W. Impacts of the COVID-19 pandemic on financial market connectedness. Financ. Res. Lett. 2021, 38, 101864. [Google Scholar] [CrossRef]
Series | Max | Min | Mean | Standard Deviation |
---|---|---|---|---|
WTI | 123.70 | −37.63 | 64.56 | 21.73 |
Brent | 127.98 | 19.33 | 70.53 | 24.34 |
Shengli | 130.13 | 19.67 | 65.81 | 24.82 |
Daqing | 124.19 | 12.35 | 64.58 | 25.42 |
Dubai | 127.91 | 13.56 | 68.35 | 24.13 |
Minas | 121.60 | 11.56 | 67.44 | 25.74 |
Time Scales | Time–Frequency Domain | Term |
---|---|---|
D1 | 2–4 Days | Short Term |
D2 | 4–8 Days | |
D3 | 8–16 Days | Medium Term |
D4 | 16–32 Days | |
D5 | 32–64 Days | Long Term |
D6 | 64–128 Days | |
V | More than 128 Days | Trend Level |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S. Dynamic Multiscale Information Spillover among Crude Oil Time Series. Entropy 2022, 24, 1248. https://doi.org/10.3390/e24091248
An S. Dynamic Multiscale Information Spillover among Crude Oil Time Series. Entropy. 2022; 24(9):1248. https://doi.org/10.3390/e24091248
Chicago/Turabian StyleAn, Sufang. 2022. "Dynamic Multiscale Information Spillover among Crude Oil Time Series" Entropy 24, no. 9: 1248. https://doi.org/10.3390/e24091248
APA StyleAn, S. (2022). Dynamic Multiscale Information Spillover among Crude Oil Time Series. Entropy, 24(9), 1248. https://doi.org/10.3390/e24091248