Improving Localization Accuracy under Constrained Regions in Wireless Sensor Networks through Geometry Optimization
Abstract
:1. Introduction
- We consider certain specific irregular deployment region constraints in this paper, which are embodied in two aspects: the initial circular region and the minimum safety distance requirement.
- We describe the optimal geometry as a nonlinear constrained optimization problem. Its objective function is the D-optimality, and the constraints are the irregular feasible positions of the sensors.
- We transform the established constrained optimization problem into an equivalent form expressed by maximum feasible angle and separation angles to reduce the solution complexity.
- We first give the optimal geometries for two and three sensors, respectively, and then extend them to any number of sensors and give some discussions for arbitrarily shaped deployment regions.
2. Problem Statement
2.1. Irregular Feasible Deployment Region
2.2. D-Optimality-Based Evaluation Criterion
2.3. Equivalent Constrained Optimization Problem
- If , is an empty set, .
- If , is a crescent-shaped region, and its maximum feasible angle is , .
- If , is a crescent-shaped region, and its maximum feasible angle is .
- If , the minimum safety distance has no effect on , i.e., , the maximum feasible angle is .
3. Geometry Optimization for Two Sensors
3.1. The Tangent Angle
3.2. The Tangent Angle
4. Geometry Optimization for Three Sensors
4.1. The Tangent Angle
4.2. The Tangent Angle
4.3. The Tangent Angle
5. Extension to Arbitrary Numbers and Shapes
5.1. The Tangent Angle
5.2. The Tangent Angle
5.3. The Tangent Angle
5.4. Arbitrarily Shaped Feasible Deployment Regions
6. Numerical Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Fan, F.; Li, W.; Chu, S.C.; Pan, J.S. A parallel compact sine cosine algorithm for TDOA localization of wireless sensor network. Telecommun. Syst. 2021, 78, 213–223. [Google Scholar] [CrossRef]
- Liang, Q.; Chu, S.C.; Yang, Q.; Liang, A.; Pan, J.S. Multi-Group Gorilla Troops Optimizer with Multi-Strategies for 3D Node Localization of Wireless Sensor Networks. Sensors 2022, 22, 4275. [Google Scholar] [CrossRef] [PubMed]
- Huerta, M.K.; Garcia-Cedeno, A.; Guillermo, J.C.; Clotet, R. Wireless sensor networks applied to precision agriculture: A worldwide literature review with emphasis on Latin America. IEEE Geosci. Remote Sens. Mag. 2021, 9, 209–222. [Google Scholar] [CrossRef]
- Pannetier, B.; Dezert, J.; Moras, J.; Levy, R. Wireless sensor network for tactical situation assessment. IEEE Sens. J. 2021, 22, 1051–1062. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, G.; Ho, K.C. Sensor network-based rigid body localization via semi-definite relaxation using arrival time and doppler measurements. IEEE Trans. Wirel. Commun. 2019, 18, 1011–1025. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, G.; Ho, K.C. Accurate semidefinite relaxation method for elliptic localization with unknown transmitter position. IEEE Trans. Wirel. Commun. 2021, 20, 2746–2760. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, K.C. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Trans. Wirel. Commun. 2018, 17, 1242–1254. [Google Scholar] [CrossRef]
- Naseri, M.; Amiri, H. A novel bearing-only localization for generalized Gaussian noise. Signal Process. 2021, 189, 108248. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H. Cluster based multidimensional scaling for irregular cognitive radio networks localization. IEEE Trans. Signal Process. 2016, 64, 2649–2659. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H.; Al-Naffouri, T.Y.; Alouini, M.S. A state-of-the-art survey on multidimensional scaling-based localization techniques. IEEE Commun. Surv. Tutor. 2019, 21, 3565–3583. [Google Scholar] [CrossRef]
- Liu, J.; Guo, G. Vehicle localization during GPS outages with extended Kalman filter and deep learning. IEEE Trans. Instrum. Meas. 2021, 70, 7503410. [Google Scholar] [CrossRef]
- Jondhale, S.R.; Deshpande, R.S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sens. J. 2019, 19, 224–233. [Google Scholar] [CrossRef]
- Nardone, S.; Lindgren, A.; Gong, K. Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Trans. Autom. Control 1984, 29, 775–787. [Google Scholar] [CrossRef]
- Gustafsson, F.; Gunnarsson, F. Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process. Mag. 2005, 22, 41–53. [Google Scholar] [CrossRef]
- Bishop, A.N.; Fidan, B.; Anderson, B.D.; Doğançay, K.; Pathirana, P.N. Optimality analysis of sensor-target localization geometries. Automatica 2010, 46, 479–492. [Google Scholar] [CrossRef]
- Xu, S.; Ou, Y.; Wu, X. Optimal sensor placement for 3-D time-of-arrival target localization. IEEE Trans. Signal Process. 2019, 67, 5018–5031. [Google Scholar] [CrossRef]
- Sahu, N.; Wu, L.; Babu, P.; MR, B.S.; Ottersten, B. Optimal sensor placement for source localization: A unified ADMM approach. IEEE Trans. Veh. Technol. 2022, 71, 4359–4372. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, B.M.; Lee, T.H. Optimal sensor placement for target localisation and tracking in 2D and 3D. Int. J. Control 2013, 86, 1687–1704. [Google Scholar] [CrossRef] [Green Version]
- Golihaghighi, N.; Bighesh, M.B. Using frame theory for optimal placement of new added anchors in location estimation wireless networks. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 1858–1867. [Google Scholar] [CrossRef]
- Xu, S. Optimal sensor placement for target localization using hybrid RSS, AOA and TOA measurements. IEEE Commun. Lett. 2020, 24, 1966–1970. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Alouini, M.S.; Al-Naffouri, T.Y. Analysis of 3D localization in underwater optical wireless networks with uncertain anchor positions. Sci. China Inf. Sci. 2020, 63, 202305. [Google Scholar] [CrossRef]
- Li, Y.; Qi, G.; Sheng, A. Optimal deployment of vehicles with circular formation for bearings-only multi-target localization. Automatica 2019, 105, 347–355. [Google Scholar] [CrossRef]
- Moreno-Salinas, D.; Pascoal, A.M.; Aranda, J. Multiple underwater target positioning with optimally placed acoustic surface sensor networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718773234. [Google Scholar] [CrossRef] [Green Version]
- Bo, X.; Razzaqi, A.A.; Wang, X.; Farid, G. Optimal geometric configuration of sensors for received signal strength based cooperative localization of submerged AUVs. Ocean Eng. 2020, 214, 107785. [Google Scholar] [CrossRef]
- Sadeghi, M.; Behnia, F.; Amiri, R. Optimal sensor placement for 2-D range-only target localization in constrained sensor geometry. IEEE Trans. Signal Process. 2020, 68, 2316–2327. [Google Scholar] [CrossRef]
- Xu, S.; Rice, M.; Rice, F. Optimal TOA-sensor placement for two target localization simultaneously using shared sensors. IEEE Commun. Lett. 2021, 25, 2584–2588. [Google Scholar] [CrossRef]
- Yoo, K.; Chun, J. Analysis of optimal range sensor placement for tracking a moving target. IEEE Commun. Lett. 2020, 24, 1700–1704. [Google Scholar] [CrossRef]
- Fang, X.; Yan, W.; Zhang, F.; Li, J. Optimal sensor placement for range-based dynamic random localization. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2393–2397. [Google Scholar] [CrossRef]
- Xu, S.; Doğançay, K. Optimal sensor placement for 3-D angle-of-arrival target localization. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1196–1211. [Google Scholar] [CrossRef]
Distances | Tangent Angle | Maximum Feasible Angle | |
---|---|---|---|
, | |||
, | |||
Distances | Tangent Angle | Maximum Feasible Angle | |
---|---|---|---|
, | |||
, | |||
, | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; He, Z.; Zhang, S.; Li, J.; Shi, R. Improving Localization Accuracy under Constrained Regions in Wireless Sensor Networks through Geometry Optimization. Entropy 2023, 25, 32. https://doi.org/10.3390/e25010032
Fang X, He Z, Zhang S, Li J, Shi R. Improving Localization Accuracy under Constrained Regions in Wireless Sensor Networks through Geometry Optimization. Entropy. 2023; 25(1):32. https://doi.org/10.3390/e25010032
Chicago/Turabian StyleFang, Xinpeng, Zhihao He, Shouxu Zhang, Junbing Li, and Ranjun Shi. 2023. "Improving Localization Accuracy under Constrained Regions in Wireless Sensor Networks through Geometry Optimization" Entropy 25, no. 1: 32. https://doi.org/10.3390/e25010032
APA StyleFang, X., He, Z., Zhang, S., Li, J., & Shi, R. (2023). Improving Localization Accuracy under Constrained Regions in Wireless Sensor Networks through Geometry Optimization. Entropy, 25(1), 32. https://doi.org/10.3390/e25010032