Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics
Abstract
:1. Introduction
2. Optical Microcavity Billiards with Sources
3. Source-Induced Dynamics: Ray–Wave Correspondence in Phase Space
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stöckmann, H.J. Quantum Dots: An Introduction; Cambridge University Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Haake, F. Quantum Signatures of Chaos; Springer Series in Synergetics; Springer: Berlin, Germany, 2001. [Google Scholar]
- Nakamura, K.; Harayama, T. Quantum Chaos and Quantum Dots; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Casati, G.; Val-Gris, F.; Guarnieri, I. On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Nuovo C. (1971–1985) 1980, 28, 279–282. [Google Scholar] [CrossRef]
- Bohigas, O.; Giannoni, M.J.; Schmit, C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Phys. Rev. Lett. 1984, 52, 1–4. [Google Scholar] [CrossRef]
- Mehta, M.L. Random Matrix Theory; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Vahala, K. Optical Microcavities; World Scientific: Singapore, 2004. [Google Scholar]
- Nöckel, J.U.; Stone, A.D. Ray and wave chaos in asymmetric resonant optical cavities. Nature 1997, 385, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Gmachl, C.; Capasso, F.; Narimanov, E.E.; Nöckel, J.U.; Stone, A.D.; Faist, J.; Sivco, D.L.; Cho, A.Y. High-Power Directional Emission from Microlasers with Chaotic Resonators. Science 1998, 280, 1556–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doya, V.; Legrand, O.; Mortessagne, F.; Miniatura, C. Light scarring in an optical fiber. Phys. Rev. Lett. 2001, 88, 014102. [Google Scholar] [CrossRef]
- Schäfer, R.; Kuhl, U.; Stöckmann, H.J. Directed emission from a dielectric microwave billiard with quadrupolar shape. New J. Phys. 2006, 8, 46. [Google Scholar] [CrossRef]
- Bäcker, A.; Ketzmerick, R.; Löck, S.; Robnik, M.; Vidmar, G.; Höhmann, R.; Kuhl, U.; Stöckmann, H.J. Dynamical Tunneling in Mushroom Billiards. Phys. Rev. Lett. 2008, 100, 174103. [Google Scholar] [CrossRef] [Green Version]
- Bittner, S.; Dietz, B.; Günther, U.; Harney, H.L.; Miski-Oglu, M.; Richter, A.; Schäfer, F. PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard. Phys. Rev. Lett. 2012, 108, 024101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Monceaux, Y.; Bittner, S.; Chao, K.; Reynoso de la Cruz, H.M.; Lafargue, C.; Decanini, D.; Dietz, B.; Zyss, J.; Grigis, A.; et al. Möbius Strip Microlasers: A Testbed for Non-Euclidean Photonics. Phys. Rev. Lett. 2021, 127, 203901. [Google Scholar] [CrossRef]
- Schrepfer, J.K.; Chen, S.C.; Liu, M.H.; Richter, K.; Hentschel, M. Dirac fermion optics and directed emission from single- and bilayer graphene cavities. Phys. Rev. B 2021, 104, 155436. [Google Scholar] [CrossRef]
- Cao, H.; Wiersig, J. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 2015, 87, 61–111. [Google Scholar] [CrossRef] [Green Version]
- Schermer, M.; Bittner, S.; Singh, G.; Ulysse, C.; Lebental, M.; Wiersig, J. Unidirectional light emission from low-index polymer microlasers. Appl. Phys. Lett. 2015, 106, 101107. [Google Scholar] [CrossRef] [Green Version]
- Wiersig, J.; Hentschel, M. Combining Directional Light Output and Ultralow Loss in Deformed Microdisks. Phys. Rev. Lett. 2008, 100, 033901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Q.; Fang, W.; Liu, B.; Ho, S.T.; Solomon, G.S.; Cao, H. Chaotic microcavity laser with high quality factor and unidirectional output. Phys. Rev. A 2009, 80, 041807. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.H.; Kim, M.W.; Kim, C.M. Lasing characteristics of a Limaçon-shaped microcavity laser. Appl. Phys. Lett. 2009, 95, 141107. [Google Scholar] [CrossRef]
- Shinohara, S.; Hentschel, M.; Wiersig, J.; Sasaki, T.; Harayama, T. Ray-wave correspondence in limaçon-shaped semiconductor microcavities. Phys. Rev. A 2009, 80, 031801. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Wang, Q.J.; Diehl, L.; Hentschel, M.; Wiersig, J.; Yu, N.; Pflügl, C.; Capasso, F.; Belkin, M.A.; Edamura, T.; et al. Directional emission and universal far-field behavior from semiconductor lasers with Limaçon-shaped microcavity. Appl. Phys. Lett. 2009, 94, 251101. [Google Scholar] [CrossRef]
- Wang, Q.J.; Yan, C.; Diehl, L.; Hentschel, M.; Wiersig, J.; Yu, N.; Pflügl, C.; Belkin, M.A.; Edamura, T.; Yamanishi, M.; et al. Deformed microcavity quantum cascade lasers with directional emission. New J. Phys. 2009, 11, 125018. [Google Scholar] [CrossRef]
- Albert, F.; Hopfmann, C.; Eberspächer, A.; Arnold, F.; Emmerling, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; et al. Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers. Appl. Phys. Lett. 2012, 101, 021116. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ryu, J.W.; Kwon, T.Y.; Rim, S.; Kim, C.M. Scarred resonances and steady probability distribution in a chaotic microcavity. Phys. Rev. A 2005, 72, 061801. [Google Scholar] [CrossRef]
- You, M.; Sakakibara, D.; Makino, K.; Morishita, Y.; Matsumura, K.; Kawashima, Y.; Yoshikawa, M.; Tonosaki, M.; Kanno, K.; Uchida, A.; et al. Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers. Entropy 2022, 24, 1648. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.; Doya, V.; Legrand, O.; Mortessagne, F. Selective amplification of scars in a chaotic optical fiber. Phys. Rev. Lett. 2007, 99, 224101. [Google Scholar] [CrossRef] [Green Version]
- Hentschel, M.; Kwon, T.Y. Designing and understanding directional emission from spiral microlasers. Opt. Lett. 2009, 34, 163–165. [Google Scholar] [CrossRef] [Green Version]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Hentschel, M.; Schomerus, H.; Schubert, R. Husimi functions at dielectric interfaces: Inside-outside duality for optical systems and beyond. Europhys. Lett. 2003, 62, 636. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; Robnik, M. Semiclassical level spacings when regular and chaotic orbits coexist. J. Phys. A Math. Gen. 1984, 17, 2413. [Google Scholar] [CrossRef]
- Prosen, T.; Robnik, M. Semiclassical energy level statistics in the transition region between integrability and chaos: Transition from Brody-like to Berry-Robnik behaviour. J. Phys. A Math. Gen. 1994, 27, 8059. [Google Scholar] [CrossRef]
- Tureci, H.E.; Stone, A.D. Deviation from Snell’s law for beams transmitted near the critical angle: Application to microcavity lasers. Opt. Lett. 2002, 27, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Rex, N.B.; Tureci, H.E.; Schwefel, H.G.L.; Chang, R.K.; Stone, A.D. Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators. Phys. Rev. Lett. 2002, 88, 094102. [Google Scholar] [CrossRef] [Green Version]
- Hentschel, M.; Schomerus, H. Fresnel laws at curved dielectric interfaces of microresonators. Phys. Rev. E 2002, 65, 045603. [Google Scholar] [CrossRef]
- Schomerus, H.; Hentschel, M. Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase-Space Unification of Fresnel Filtering and the Goos-Hänchen Shift. Phys. Rev. Lett. 2006, 96, 243903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterhinninghofen, J.; Wiersig, J.; Hentschel, M. Goos-Hänchen shift and localization of optical modes in deformed microcavities. Phys. Rev. E 2008, 78, 016201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harayama, T.; Shinohara, S. Ray-wave correspondence in chaotic dielectric billiards. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015, 92, 042916. [Google Scholar] [CrossRef] [PubMed]
- Stockschläder, P.; Kreismann, J.; Hentschel, M. Curvature dependence of semiclassical corrections to ray optics: How Goos-Hänchen shift and Fresnel filtering deviate from the planar case result. EPL 2014, 107, 64001. [Google Scholar] [CrossRef]
- Stockschläder, P.; Hentschel, M. Consequences of a wave-correction extended ray dynamics for integrable and chaotic optical microcavities. J. Opt. 2017, 19, 125603. [Google Scholar] [CrossRef] [Green Version]
- Goos, F.; Hänchen, H. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys. 1947, 436, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Goos, F.; Lindberg-Hänchen, H. Neumessung des Strahlversetzungseffektes bei Totalreflexion. Ann. Phys. 1949, 440, 251–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seemann, L.; Hentschel, M. Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics. Entropy 2023, 25, 95. https://doi.org/10.3390/e25010095
Seemann L, Hentschel M. Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics. Entropy. 2023; 25(1):95. https://doi.org/10.3390/e25010095
Chicago/Turabian StyleSeemann, Lukas, and Martina Hentschel. 2023. "Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics" Entropy 25, no. 1: 95. https://doi.org/10.3390/e25010095
APA StyleSeemann, L., & Hentschel, M. (2023). Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics. Entropy, 25(1), 95. https://doi.org/10.3390/e25010095