Invariant-Parameterized Exact Evolution Operator for SU(2) Systems with Time-Dependent Hamiltonian
Abstract
:1. Introduction
2. Definition of the Time-Derivative Operator in the Schrödinger Picture
3. Dynamical Invariants of a Qubit in a Classical Field
3.1. Invariants Directly Lead to the Evolution Operator
4. An Intriguing Example
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giscard, P.L.; Bonhomme, C. Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR. Phys. Rev. Res. 2020, 2, 023081. [Google Scholar] [CrossRef]
- Blanes, S.; Casas, F.; Oteo, J.; Ros, J. The Magnus Expansion and Some of Its Applications. Phys. Rep. 2009, 470, 151. [Google Scholar] [CrossRef] [Green Version]
- Dyson, F.J. The S Matrix in Quantum Electrodynamics. Phys. Rev. 1949, 75, 1736. [Google Scholar] [CrossRef]
- Moretti, V. Teoria Spettrale e Meccanica Quantistica; Springer: Milan, Italy, 2010. [Google Scholar]
- Dennery, P.; Krzywicki, A. Mathematics For Physicists; A Harper International Edition: New York, NY, USA, 1969. [Google Scholar]
- Boyd, J.P. Hyperasymptotics and The Linear Boundary Layer Problem: Why Asymptotic Series Diverge. Siam Rev. 2005, 47, 553. [Google Scholar] [CrossRef]
- Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Hale, J.K. Ordinary Differential Equations; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Choi, J.R. Pertubation Theory for Time-Dependent Quantum Systems Involving Complex Potentials. Front. Phys. 2020, 8, 1. [Google Scholar] [CrossRef]
- Dong, D.; Petersen, I.R. Quantum estimation, control and learning: Opportunities and challenges. Annu. Rev. Control. 2022, 54, 243. [Google Scholar] [CrossRef]
- Brif, C.; Chakrabarti, R.; Rabitz, H. Control of quantum phenomena: Past, present and future. New J. Phys. 2009, 12, 075008. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.R., Jr. Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians. Phys. Rev. Lett. 1967, 18, 510. [Google Scholar] [CrossRef]
- Lewis, H.R., Jr. Class of Exact Invariants for Classical and Quantum Time-Dependent Harmonic Oscillators. J. Math. Phys. 1968, 9, 1976. [Google Scholar] [CrossRef]
- Lewis, H.R., Jr.; Leach, P.G.L. Exact invariants for a class of time-dependent nonlinear Hamiltonian systems. J. Math. Phys. 1982, 23, 165. [Google Scholar] [CrossRef]
- Hartley, J.C.; Ray, J.L. Coherent states for the time-dependent harmonic oscillator. Phys. Rev. D 1982, 25, 382. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Manko, V.I. Invariants and the Evolution of Nonstationary Quantum Systems. In Proceedings of Lebedev Physical Institute; Nova Science Publishers: Commack, NY, USA, 1989; Volume 183. [Google Scholar]
- Cheng, C.M.; Fung, P.C.W. The evolution operator technique in solving the Schrodinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator. J. Phys. A 1988, 21, 165. [Google Scholar] [CrossRef]
- Nagyiev, S.M. Using the Evolution Operator Method to Describe a Particle in a Homogeneous Alternating Field. Theor. Math. Phys. 2018, 194, 313. [Google Scholar] [CrossRef]
- Hukovski, K.V. Solving evolutionary-type differential equations and physical problems using the operator method. Theor. Math. Phys. 2017, 190, 52. [Google Scholar]
- Nagyiev, S.M.; Ahmadov, A.I. Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants. Theor. Math. Phys. 2019, 198, 392. [Google Scholar] [CrossRef]
- Lewis, H.R., Jr.; Riesenfeld, W.B. An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys. 1969, 10, 1458. [Google Scholar] [CrossRef]
- Gao, X.G.; Xu, J.B.; Qian, T.Z. Invariants and geometric phase for systems with non-Hermitian time-dependent Hamiltonians. Phys. Rev. A 1992, 46, 3626. [Google Scholar] [CrossRef]
- Guerrero, J.; Lopez-Ruiz, F.F. On the Lewis–Riesenfeld (Dodonov–Man’ko) invariant method. Phys. Scr. 2015, 90, 074046. [Google Scholar] [CrossRef] [Green Version]
- Zelaya, K.; Rosas-Ortiz, O. Quantum nonstationary oscillators: Invariants, dynamical algebras and coherent states via point transformations. Phys. Scr. 2020, 95, 064004. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, S.-Q.; Li, M.-X.; Liu, X.-H. Lewis-Riesenfeld Invariants in Two-level Quantum System Without the Rotating-Wave Approximation. Int. J. Theor. Phys. 2020, 59, 3613–3622. [Google Scholar] [CrossRef]
- Shen, J.Q.; Zhu, H.Y.; Chen, P. Exact solutions and geometric phase factor of time-dependent three-generator quantum systems. Eur. Phys. J. D 2003, 23, 305. [Google Scholar] [CrossRef]
- Hartley, J.R.; Ray, J.R. Ermakov systems and quantum-mechanical superposition laws. Phys. Rev. A 1981, 24, 2873. [Google Scholar] [CrossRef]
- Huang, X.-B.; Chen, Y.-H.; Wang, Z. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities. Sci. Rep. 2016, 6, 25707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohe, M.A. Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. A 2009, 42, 035307. [Google Scholar] [CrossRef]
- Lin, Q.-G. Charged Particles In A Rotating Magnetic Field. Phys. Rev. A 2000, 63, 012108. [Google Scholar] [CrossRef] [Green Version]
- Fasihi, M.-A.; Wan, Y.; Nakahara, M. Non-adiabatic Fast Control of Mixed States Based on Lewis–Riesenfeld Invariant. J. Phys. Soc. Jpn. 2012, 81, 024007. [Google Scholar] [CrossRef] [Green Version]
- Monteoliva, D.B.; Korsch, H.J.; Nunez, J.A. On Geometric Phases and Dynamical Invariants. J. Phys. A 1994, 27, 6897. [Google Scholar] [CrossRef]
- Tseng, S.-Y.; Chen, X. Engineering of fast mode conversion in multimode waveguides. Opt. Lett. 2012, 37, 5118. [Google Scholar] [CrossRef] [Green Version]
- Urzua, A.R.; Ramos-Prieto, I.; Fernandez-Guasti, M.; Moya-Cessa, H.M. Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions. Quantum Rep. 2019, 1, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.-Y.; Kim, J.K. Heisenberg-Picture Approach To The Exact Quantum Motion Of A Time-Dependent Harmonic Oscillator. Phys. Rev. A 1995, 51, 4268. [Google Scholar] [CrossRef]
- Eliezer, C.J.; Gray, A. A Note On The Time-Dependent Harmonic oscillator. Siam J. Appl. Math. 1976, 30, 463. [Google Scholar] [CrossRef]
- Dodonov, V.V. Universal integrals of motion and universal invariants of quantum systems. J. Phys. A 2000, 33, 7721. [Google Scholar] [CrossRef]
- Dodonov, V.V. Invariant Quantum States of Quadratic Hamiltonians. Entropy 2021, 23, 634. [Google Scholar] [CrossRef] [PubMed]
- Colmenar, R.K.L.; Güngördü, U.; Kestner, J.P. Conditions for Equivalent Noise Sensitivity of Geometric and Dynamical Quantum Gates. PRX Quantum 2022, 3, 030310. [Google Scholar] [CrossRef]
- Kanaar, D.W.; Güngördü, U.; Kestner, J.P. Non-adiabatic quantum control of quantum dot arrays with fixed exchange using Cartan decomposition. Philos. Trans. R. Soc. A 2022, 380, 20210275. [Google Scholar] [CrossRef]
- Garcia Quijas, P.C.; Arevalo Aquilar, L.M. Factorizing The Time Evolution Operator. Phys. Scr. 2007, 75, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Patra, P.; Chowdhury, A.; Jana, M. Dynamics of the free time-dependent effective mass. Eur. Phys. J. Plus 2022, 137, 1021. [Google Scholar] [CrossRef]
- Kuna, M.; Naudts, J. General solutions of quantum mechanical equations of motion with time-dependent hamiltonians: A Lie algebraic approach. Rep. Math. Phys. 2010, 65, 77–108. [Google Scholar] [CrossRef]
- Naudts, J.; de Galway, W. O’K. Analytic solutions for a three-level system in a time-dependent field. Physica D 2011, 240, 542–545. [Google Scholar] [CrossRef] [Green Version]
- Hioe, F.T. N-level quantum systems with SU(2) dynamic symmetry. J. Opt. Soc. Am. B 1987, 4, 1327–1332. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Geometric phases, symmetries of dynamical invariants and exact solution of the Schrödinger equation. J. Phys. A 2001, 34, 6325. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J.G. Shortcuts To Adiabaticity For Non-Hermitian Systems. Phys. Rev. A 2011, 84, 023415. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-L.; Song, C.; Ji, X.; Zhang, S. Fast generation of three-dimensional entanglement between two spatially separated atoms via invariant-based shortcut. J. Opt. Soc. Am. B 2016, 33, 2026–2032. [Google Scholar] [CrossRef] [Green Version]
- Velivheva, E.P.; Suzko, A.A. Exact Solutions of the Nonstationary Schrodinger Equation. Theor. Math. Phys. 1998, 115, 687. [Google Scholar] [CrossRef]
- Messina, A.; Nakazato, H. Analytically solvable Hamiltonians for quantum two-level systems and their dynamics. J. Phys. A Math. Theor. 2014, 47, 445302. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.; Das Sarma, S. Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems. Phys. Rev. Lett. 2012, 109, 060401. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; de Castro, A.S.M.; Nakazato, H.; Messina, A. Classes of Exactly Solvable Generalized Semi-Classical Rabi Systems. Ann. der Phys. 2018, 530, 1800198. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; Messina, A.; Ivanov, P.A.; Vitanov, N.V. Spin-1/2 sub-dynamics nested in the quantum dynamics of two coupled qutrits. J. Phys. A 2017, 50, 175301. [Google Scholar] [CrossRef] [Green Version]
- Braak, D.; Chen, Q.-H.; Batchelor, M.T.; Solano, E. Semi-classical and quantum Rabi models: In celebration of 80 years. J. Phys. A 2016, 49, 300301. [Google Scholar] [CrossRef] [Green Version]
- Castanos, L.O. A simple, analytic solution of the semiclassical Rabi model in the red-detuned regime. Phys. Lett. A 2019, 383, 1997–2003. [Google Scholar] [CrossRef]
- Markovich, L.A.; Grimaudo, R.; Messina, A.; Nakazato, H. An example of interplay between Physics and Mathematics: Exact resolution of a new class of Riccati Equations. Ann. Phys. 2017, 385, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; de Castro, A.S.M.; Nakazato, H.; Messina, A. Analytically solvable 2×2 PT-symmetry dynamics from su(1,1)-symmetry problems. Phys. Rev. A 2019, 99, 052103. [Google Scholar] [CrossRef] [Green Version]
- Irish, E.K.; Armour, A.D. Defining the Semiclassical Limit of the Quantum Rabi Hamiltonian. Phys. Rev. Lett. 2022, 129, 522–531. [Google Scholar] [CrossRef]
- Lavine, J.P. Time-Dependent Quantum Mechanics of Two-Level Systems; World Scientific: Singapore, 2019. [Google Scholar]
- Grimaudo, R.; de Castro, A.S.M.; Kuś, M.; Messina, A. Exactly solvable time-dependent pseudo-Hermitian su(1,1) Hamiltonian models. Phys. Rev. A 2018, 98, 024004. [Google Scholar] [CrossRef] [Green Version]
- Bagrov, V.G.; Gitman, D.M.; Baldiotti, M.C.; Levin, A.D. Spin Equation and its solutions. Ann. der Phys. 2005, 14, 764–789. [Google Scholar] [CrossRef]
- Grimaudo, R.; Man’ko, V.I.; Man’ko, M.A.; Messina, A. Dynamics of a harmonic oscillator coupled with a Glauber amplifier. Phys. Scr. 2019, 95, 024004. [Google Scholar] [CrossRef] [Green Version]
- Shamshutdinova, V.V.; Samsonov, B.F.; Gitman, D.M. Two-level systems: Exact solutions and underlying pseudo-supersymmetry. Ann. Phys. 2007, 322, 1043–1061. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Nakazato, H.; Grimaudo, R.; Messina, A. Analytic estimation of transition between instantaneous eigenstates of quantum two-level system. Sci. Rep. 2018, 8, 17433. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.; Sergi, A.; Messina, A. Evolution of Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature. Entropy 2021, 23, 147. [Google Scholar] [CrossRef]
- Grimaudo, R.; Messina, A.; Nakazato, H. Exactly solvable time-dependent models of two interacting two-level systems. Phys. Rev. A 2016, 94, 022108. [Google Scholar] [CrossRef]
- Grimaudo, R.; Lamata, L.; Solano, E.; Messina, A. Cooling of many-body systems via selective interactions. Phys. Rev. A 2018, 98, 042330. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, V.; Shevchenko, S.N.; Nori, F. Nonadiabatic Landau–Zener–Stückelberg–Majorana transitions, dynamics, and interference. Phys. Rep. 2023, 995, 1–89. [Google Scholar] [CrossRef]
- Grimaudo, R.; Isar, A.; Mihaescu, T.; Ghiu, I.; Messina, A. Dynamics of quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic fields. Results Phys. 2019, 13, 102147. [Google Scholar] [CrossRef]
- Nguyen, V.H. Quantum dynamics of two-spin-qubit systems. J. Phys. Condens. Matter 2009, 21, 273201. [Google Scholar] [CrossRef] [PubMed]
- Grimaudo, R.; Belousov, Y.; Nakazato, H.; Messina, A. Time evolution of a pair of distinguishable interacting spins subjected to controllable and noisy magnetic fields. Ann. Phys. 2018, 392, 242–259. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; Vitanov, N.V.; Messina, A. Landau-Majorana-Stückelberg-Zener dynamics driven by coupling for two interacting qutrit systems. Phys. Rev. B 2019, 99, 214406. [Google Scholar] [CrossRef] [Green Version]
- Sergi, A.; Sinayskiy, I.; Petruccione, F. Numerical and analytical approach to the quantum dynamics of two coupled spins in bosonic baths. Phys. Rev. A 2009, 80, 012108. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; Messina, A.; Sergi, A.; Vitanov, N.V.; Filippov, S.N. Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla. Entropy 2020, 22, 1184. [Google Scholar] [CrossRef]
- Grimaudo, R.; Vitanov, N.V.; Messina, A. Coupling-assisted Landau-Majorana-Stückelberg-Zener transition in a system of two interacting spin qubits. Phys. Rev. B 2019, 99, 174416. [Google Scholar] [CrossRef] [Green Version]
- Ghiu, I.; Grimaudo, R.; Mihaescu, T.; Isar, A.; Messina, A. Quantum Correlation Dynamics in Controlled Two-Coupled-Qubit Systems. Entropy 2020, 22, 785. [Google Scholar] [CrossRef]
- Strathearn, A.; Kirton, K.; Kilda, D.; Keeling, J.; Lovett, B.W. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat. Commun. 2018, 9, 3322. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, R.; de Castro, A.S.M.; Messina, A.; Davide, V. Spin-Chain-Star Systems: Entangling Multiple Chains of Spin Qubits. Fortschr. der Phys. 2022, 70, 2200042. [Google Scholar] [CrossRef]
- Grimaudo, R.; Vitanov, N.V.; de Castro, A.S.M.; Valenti, D.; Messina, A. Greenberger-Horne-Zeilinger-state Generation in Qubit-Chains via a Single Landau-Majorana-Stückelberg-Zener π/2-pulse. Fortschr. der Phys. 2022, 70, 2200010. [Google Scholar] [CrossRef]
- Milburn, G.J.; Laflamme, R.; Sanders, B.C.; Knill, E. Quantum dynamics of two coupled qubits. Phys. Rev. A 2022, 65, 032316. [Google Scholar] [CrossRef] [Green Version]
- Belousov, Y.; Grimaudo, R.; Messina, A.; Migliore, A.; Sergi, A. New approach to describe two coupled spins in a variable magnetic field. AIP Conf. Proc. 2021, 2362, 040001. [Google Scholar]
- Grimaudo, R.; de Castro, A.S.M.; Messina, A.; Solano, E.; Valenti, D. Quantum phase transitions for an integrable quantum Rabi-like model with two interacting qubits. arXiv 2022, arXiv:2211.07207. [Google Scholar]
- Grimaudo, R.; Messina, A.; Nakazato, H.; Sergi, A.; Valenti, D. Spin-spin coupling-based quantum and classical phase transitions in two-impurity spin-boson models. arXiv 2022, arXiv:2205.09367. [Google Scholar]
- Dong, D.; Petersen, I.R. Quantum control theory and applications: A survey. IET Control. Theory Appl. 2011, 4, 2651–2671. [Google Scholar] [CrossRef] [Green Version]
- Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D.; et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol. 2022, 9, 19. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin, Germany, 1966. [Google Scholar]
- Yang, G.; Li, W.; Cen, L.-X. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model. Chin. Phys. Lett. 2018, 35, 013201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakazato, H.; Sergi, A.; Migliore, A.; Messina, A. Invariant-Parameterized Exact Evolution Operator for SU(2) Systems with Time-Dependent Hamiltonian. Entropy 2023, 25, 96. https://doi.org/10.3390/e25010096
Nakazato H, Sergi A, Migliore A, Messina A. Invariant-Parameterized Exact Evolution Operator for SU(2) Systems with Time-Dependent Hamiltonian. Entropy. 2023; 25(1):96. https://doi.org/10.3390/e25010096
Chicago/Turabian StyleNakazato, Hiromichi, Alessandro Sergi, Agostino Migliore, and Antonino Messina. 2023. "Invariant-Parameterized Exact Evolution Operator for SU(2) Systems with Time-Dependent Hamiltonian" Entropy 25, no. 1: 96. https://doi.org/10.3390/e25010096
APA StyleNakazato, H., Sergi, A., Migliore, A., & Messina, A. (2023). Invariant-Parameterized Exact Evolution Operator for SU(2) Systems with Time-Dependent Hamiltonian. Entropy, 25(1), 96. https://doi.org/10.3390/e25010096