FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising
Abstract
:1. Introduction
- We propose a Fourier prior for image denoising that includes the physical characteristics of noisy images in both the spatial and frequency domains;
- We designed and implemented a simple and effective residual block based on the Fourier transform that processes the amplitude and phase spectra of noisy images in parallel within Res FFT blocks and learns the frequency domain features of noisy images.
2. Fourier Embedded U-Shaped Network
2.1. Fourier Prior
2.2. Res FFT Blocks
2.3. U-Shaped Network
2.4. Loss Function
3. Experiments
3.1. Datasets
3.1.1. Training Set and Validation Set
3.1.2. Testing Set
3.2. Experiment Setup
3.2.1. Implementation Details
3.2.2. Evaluation Metric
3.3. Ablation Experiment
3.4. Comparison with State-of-the-Art Denoising Methods
3.4.1. Gray Image Denoising
3.4.2. Color Image Denoising
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep Learning on Image Denoising: An overview. Neural Netw. Off. J. Int. Neural Netw. Soc. 2019, 131, 251–275. [Google Scholar] [CrossRef]
- Zhang, L.; Zuo, W. Image Restoration: From Sparse and Low-Rank Priors to Deep Priors [Lecture Notes]. IEEE Signal Process. Mag. 2017, 34, 172–179. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K.O. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Coupé, P.; Yger, P.; Prima, S.; Hellier, P.; Kervrann, C.; Barillot, C. An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images. IEEE Trans. Med Imaging 2008, 27, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, Y.; Yue, X.; Li, X.; Fang, H.; Hong, H.; Zhang, T. Joint horizontal-vertical enhancement and tracking scheme for robust contact-point detection from pantograph-catenary infrared images. Infrared Phys. Technol. 2020, 105, 103156. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Li, Q.; Zhang, T.; Sang, N.; Hong, H. Progressive Dual-Domain Filter for Enhancing and Denoising Optical Remote-Sensing Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 759–763. [Google Scholar] [CrossRef]
- AlMahamid, F.; Grolinger, K. Reinforcement Learning Algorithms: An Overview and Classification. In Proceedings of the 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Virtual Event, 12–17 September 2021; pp. 1–7. [Google Scholar]
- Hasselt, H.V.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Wu, W.; Lv, G.; Duan, Y.; Liang, P.; Zhang, Y.; Xia, Y. DCANet: Dual Convolutional Neural Network with Attention for Image Blind Denoising. arXiv 2023, arXiv:2304.01498. [Google Scholar]
- Gurrola-Ramos, J.; Dalmau, O.; Alarcón, T.E.M. A Residual Dense U-Net Neural Network for Image Denoising. IEEE Access 2021, 9, 31742–31754. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Rithwik, K.; Chaudhury, K.N. A Simple Yet Effective Improvement to the Bilateral Filter for Image Denoising. arXiv 2015, arXiv:1505.06578. [Google Scholar]
- Draper, A.; Taylor, L.L. A Survey on the Visual Perceptions of Gaussian Noise Filtering on Photography. arXiv 2020, arXiv:2012.10472. [Google Scholar]
- Hu, Z.; Wang, S. Median filtering forensics based on discriminative multi-scale sparse coding. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 141–145. [Google Scholar]
- Varish, N.; Pal, A.K. A novel image retrieval scheme using gray level co-occurrence matrix descriptors of discrete cosine transform based residual image. Appl. Intell. 2018, 48, 2930–2953. [Google Scholar] [CrossRef]
- Zou, B.; Liu, H.; Shang, Z.; Li, R. Image denoising based on wavelet transform. In Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 September 2015; pp. 342–344. [Google Scholar]
- Huang, Z.; Wang, L.; An, Q.; Zhou, Q.; Hong, H. Learning a Contrast Enhancer for Intensity Correction of Remotely Sensed Images. IEEE Signal Process. Lett. 2022, 29, 394–398. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Z. A Neighborhood-Based Value Iteration Algorithm for POMDP Problems. In Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5–7 November 2018; pp. 808–812. [Google Scholar]
- Huang, Z.; Zhu, Z.; An, Q.; Wang, Z.; Zhou, Q.; Zhang, T.; Alshomrani, A.S. Luminance Learning for Remotely Sensed Image Enhancement Guided by Weighted Least Squares. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Li, Q.; Li, X.; Zhang, T.; Sang, N.; Hong, H. Joint Analysis and Weighted Synthesis Sparsity Priors for Simultaneous Denoising and Destriping Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6958–6982. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2016, 26, 3142–3155. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Trans. Image Process. 2017, 27, 4608–4622. [Google Scholar] [CrossRef]
- Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward Convolutional Blind Denoising of Real Photographs. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1712–1722. [Google Scholar]
- Huang, Z.; Zhu, Z.; Wang, Z.; Shi, Y.; Fang, H.; Zhang, Y. DGDNet: Deep Gradient Descent Network for Remotely Sensed Image Denoising. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Moran, N.; Schmidt, D.; Zhong, Y.; Coady, P. Noisier2Noise: Learning to Denoise From Unpaired Noisy Data. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12061–12069. [Google Scholar]
- Huang, Z.; Wang, Z.; Zhu, Z.; Zhang, Y.; Fang, H.; Shi, Y.; Zhang, T. DLRP: Learning Deep Low-Rank Prior for Remotely Sensed Image Denoising. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Anwar, S.; Barnes, N. Real Image Denoising With Feature Attention. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3155–3164. [Google Scholar]
- Fan, C.M.; Liu, T.J.; Liu, K.H. Selective Residual M-Net for Real Image Denoising. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; pp. 469–473. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Shao, M.; Qiao, Y.; Meng, D.; Zuo, W. Uncertainty-guided hierarchical frequency domain Transformer for image restoration. Knowl. Based Syst. 2023, 263, 110306. [Google Scholar] [CrossRef]
- Fan, C.M.; Liu, T.J.; Liu, K.H. SUNet: Swin Transformer UNet for Image Denoising. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2333–2337. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar]
- Huang, Z.; Chen, L.; Zhang, Y.; Yu, Z.; Fang, H.; Zhang, T. Robust contact-point detection from pantograph-catenary infrared images by employing horizontal-vertical enhancement operator. Infrared Phys. Technol. 2019, 101, 146–155. [Google Scholar] [CrossRef]
- Mao, X.; Liu, Y.; lei Shen, W.; Li, Q.; Wang, Y. Deep Residual Fourier Transformation for Single Image Deblurring. arXiv 2021, arXiv:2111.11745. [Google Scholar]
- Guo, X.; Fu, X.; Zhou, M.; Huang, Z.; Peng, J.; Zha, Z. Exploring Fourier Prior for Single Image Rain Removal. In Proceedings of the International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Kammler, D.W. A First Course in Fourier Analysis: The Fast Fourier Transform. 2008. Available online: https://api.semanticscholar.org/CorpusID:123919398 (accessed on 18 May 2023).
- Hansen, E.W. Fourier Transforms: Principles and Applications. 2014. Available online: https://api.semanticscholar.org/CorpusID:118212213 (accessed on 18 May 2023).
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar]
- Martin, D.R.; Fowlkes, C.C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Franzen, R. Kodak Lossless True Color Image Suite. 1999. Available online: Http://r0k.us/graphics/kodak (accessed on 18 March 2023).
- Roth, S.; Black, M.J. Fields of Experts: A framework for learning image priors. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 860–867. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Rehman, M.U.; Nizami, I.F.; Majid, M. DeepRPN-BIQA: Deep architectures with region proposal network for natural-scene and screen-content blind image quality assessment. Displays 2021, 71, 102101. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Jin, S.; Gao, W.; Liu, F.; Du, S.; Ying, S. PGF-BIQA: Blind image quality assessment via probability multi-grained cascade forest. Comput. Vis. Image Underst. 2023, 232, 103695. [Google Scholar] [CrossRef]
- Luna, R.; Zabaleta, I.; Bertalmío, M. State-of-the-art image and video quality assessment with a metric based on an intrinsically non-linear neural summation model. Front. Neurosci. 2023, 17, 1222815. [Google Scholar] [CrossRef]
- Nizami, I.F.; Rehman, M.U.; Waqar, A.; Majid, M. Impact of visual saliency on multi-distorted blind image quality assessment using deep neural architecture. Multimed. Tools Appl. 2022, 81, 25283–25300. [Google Scholar] [CrossRef]
Methods | Loss | ||||||||
---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
(b) | 33.5579 | 0.8872 | 33.2095 | 0.8836 | 32.7649 | 0.8751 | 31.8952 | 0.8579 | |
32.3945 | 0.8666 | 31.6962 | 0.8453 | 29.1296 | 0.7655 | ||||
(c) | 33.3783 | 0.8843 | 33.2428 | 0.8837 | 32.8874 | 0.8770 | 29.4967 | 0.7906 | |
32.5373 | 0.8695 | 31.6969 | 0.8454 | 30.1490 | 0.7995 |
Methods | BSD68 | Parms | Runtime | |||||
---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |||
DnCNN [22] | 33.6233 | 0.9552 | 28.9922 | 0.8806 | 26.4376 | 0.8269 | 558K | 0.005 s |
UNet [37] | 33.9969 | 0.9640 | 29.7034 | 0.8931 | 26.8573 | 0.8355 | 34M | 0.009 s |
SUNet [32] | 35.2309 | 0.9671 | 29.5802 | 0.8964 | 26.9022 | 0.8444 | 99M | 0.048 s |
FEUSNet | 35.8763 | 0.9689 | 30.2040 | 0.9004 | 27.8699 | 0.8477 | 8M | 0.044 s |
Images | C.man | House | Peppers | Starfish | Monarch | Airplane | Parrot | Lena | Barbara | Boat | Man | Couple | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Noise level | 10 | ||||||||||||
DnCNN [22] | 31.8587 | 34.9391 | 27.0164 | 32.6365 | 40.3418 | 35.9615 | 33.1813 | 30.9360 | 34.5168 | 33.0507 | 34.0274 | 31.6149 | 33.3401 |
UNet [37] | 33.2413 | 35.6834 | 26.4148 | 32.0360 | 40.1507 | 32.9350 | 34.9532 | 38.1159 | 31.1866 | 33.2963 | 26.5380 | 32.7682 | 33.1100 |
SUNet [32] | 33.7737 | 41.9341 | 32.3558 | 39.1856 | 33.9902 | 30.5177 | 35.5054 | 39.7368 | 36.9011 | 40.0563 | 27.6437 | 33.1838 | 35.3987 |
FEUSNet | 33.5682 | 41.8812 | 36.5702 | 40.7204 | 40.6232 | 32.0950 | 35.5087 | 35.5617 | 33.4224 | 35.1235 | 34.0752 | 34.6913 | 36.1534 |
Noise level | 30 | ||||||||||||
DnCNN [22] | 29.0558 | 36.6891 | 25.7730 | 28.8950 | 29.2347 | 25.4943 | 29.6536 | 33.5781 | 32.6968 | 28.4647 | 30.2848 | 28.2205 | 29.8367 |
UNet [37] | 29.3609 | 36.7196 | 23.5930 | 28.5871 | 27.6426 | 24.3376 | 29.9903 | 28.3835 | 26.7738 | 34.8503 | 30.2311 | 29.0818 | 29.1293 |
SUNet [32] | 29.6134 | 36.7858 | 25.6224 | 28.3282 | 34.6563 | 23.9163 | 30.1507 | 27.8893 | 26.9235 | 34.7974 | 24.7896 | 27.9343 | 29.2839 |
FEUSNet | 29.9776 | 38.1233 | 25.7778 | 34.9665 | 36.0304 | 27.1347 | 30.4399 | 29.2414 | 28.5770 | 29.2499 | 23.5881 | 29.6847 | 30.2326 |
Noise level | 50 | ||||||||||||
DnCNN [22] | 27.0796 | 27.8077 | 33.0292 | 26.0415 | 26.3214 | 23.6338 | 27.4224 | 26.0859 | 24.6739 | 32.0285 | 28.3184 | 26.1363 | 27.3816 |
UNet [37] | 27.3405 | 34.2780 | 28.0408 | 26.2381 | 33.1297 | 24.1050 | 27.6724 | 26.8109 | 24.2559 | 26.3609 | 22.0707 | 26.5218 | 27.2354 |
SUNet [32] | 27.5922 | 35.0753 | 26.9206 | 32.3959 | 27.1645 | 24.0077 | 27.7915 | 32.6766 | 23.7805 | 32.5406 | 22.3230 | 26.3605 | 28.2191 |
FEUSNet | 27.8703 | 27.6870 | 25.1088 | 26.9962 | 26.7924 | 24.8094 | 27.9388 | 32.6816 | 22.9595 | 26.5815 | 28.9749 | 27.1161 | 27.1264 |
Images | C.man | House | Peppers | Starfish | Monarch | Airplane | Parrot | Lena | Barbara | Boat | Man | Couple | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Noise level | 10 | ||||||||||||
DnCNN [22] | 0.9257 | 0.9605 | 0.9638 | 0.9650 | 0.9800 | 0.9587 | 0.9666 | 0.9608 | 0.8904 | 0.9635 | 0.8930 | 0.9621 | 0.9492 |
UNet [37] | 0.9377 | 0.9646 | 0.9645 | 0.9631 | 0.9813 | 0.9633 | 0.9751 | 0.9632 | 0.9376 | 0.9634 | 0.8948 | 0.9673 | 0.9563 |
SUNet [32] | 0.9455 | 0.9672 | 0.9695 | 0.9688 | 0.9811 | 0.9678 | 0.9774 | 0.9676 | 0.9550 | 0.9684 | 0.9009 | 0.9693 | 0.9615 |
FEUSNet | 0.9452 | 0.9728 | 0.9742 | 0.9753 | 0.9841 | 0.9692 | 0.9793 | 0.9726 | 0.9720 | 0.9733 | 0.9123 | 0.9738 | 0.9670 |
Noise level | 30 | ||||||||||||
DnCNN [22] | 0.8851 | 0.9313 | 0.9318 | 0.9249 | 0.9462 | 0.9105 | 0.9288 | 0.9094 | 0.8463 | 0.8966 | 0.7942 | 0.8990 | 0.9003 |
UNet [37] | 0.8912 | 0.9330 | 0.9319 | 0.9262 | 0.9464 | 0.9144 | 0.9345 | 0.9190 | 0.8483 | 0.9083 | 0.8067 | 0.9057 | 0.9055 |
SUNet [32] | 0.9016 | 0.9368 | 0.9362 | 0.9209 | 0.9498 | 0.9165 | 0.9369 | 0.9217 | 0.8594 | 0.9095 | 0.8156 | 0.9115 | 0.9097 |
FEUSNet | 0.9030 | 0.9399 | 0.9413 | 0.9259 | 0.9550 | 0.9213 | 0.9384 | 0.9307 | 0.9070 | 0.9152 | 0.8083 | 0.9193 | 0.9171 |
Noise level | 50 | ||||||||||||
DnCNN [22] | 0.8449 | 0.9062 | 0.8980 | 0.8756 | 0.9094 | 0.8767 | 0.8971 | 0.8605 | 0.7972 | 0.8489 | 0.7299 | 0.8413 | 0.8571 |
UNet [37] | 0.8540 | 0.9135 | 0.9061 | 0.8808 | 0.9158 | 0.8805 | 0.9037 | 0.8746 | 0.8082 | 0.8581 | 0.7336 | 0.8485 | 0.8648 |
SUNet [32] | 0.8663 | 0.9224 | 0.9112 | 0.8865 | 0.9218 | 0.8865 | 0.9080 | 0.8881 | 0.8199 | 0.8667 | 0.7405 | 0.8566 | 0.8729 |
FEUSNet | 0.8679 | 0.9235 | 0.9145 | 0.8952 | 0.9239 | 0.8869 | 0.9099 | 0.8976 | 0.8405 | 0.8720 | 0.7560 | 0.8691 | 0.8798 |
Methods | CBSD68 | Kodak24 | Parms | Runtime | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |||
DnCNN [22] | 33.5717 | 0.9618 | 28.7173 | 0.8922 | 26.6094 | 0.8306 | 33.1976 | 0.9560 | 29.4191 | 0.8889 | 28.2674 | 0.8332 | 558K | 0.007 s |
UNet [37] | 34.8622 | 0.9664 | 29.4497 | 0.8987 | 27.0964 | 0.8408 | 35.3172 | 0.9618 | 29.9454 | 0.8944 | 27.2889 | 0.8428 | 34M | 0.011 s |
SUNet [32] | 35.0486 | 0.9706 | 29.8743 | 0.9081 | 27.8385 | 0.8542 | 35.0168 | 0.9663 | 30.1521 | 0.9038 | 28.3444 | 0.8568 | 99M | 0.059 s |
FEUSNet | 36.6497 | 0.9732 | 30.6664 | 0.9119 | 27.8383 | 0.8588 | 37.1193 | 0.9716 | 31.3508 | 0.9123 | 29.5117 | 0.8671 | 8M | 0.051 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Han, J.; Yuan, Q.; Zhang, Y.; Fu, Z.; Zou, M.; Huang, Z. FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising. Entropy 2023, 25, 1418. https://doi.org/10.3390/e25101418
Li X, Han J, Yuan Q, Zhang Y, Fu Z, Zou M, Huang Z. FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising. Entropy. 2023; 25(10):1418. https://doi.org/10.3390/e25101418
Chicago/Turabian StyleLi, Xi, Jingwei Han, Quan Yuan, Yaozong Zhang, Zhongtao Fu, Miao Zou, and Zhenghua Huang. 2023. "FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising" Entropy 25, no. 10: 1418. https://doi.org/10.3390/e25101418
APA StyleLi, X., Han, J., Yuan, Q., Zhang, Y., Fu, Z., Zou, M., & Huang, Z. (2023). FEUSNet: Fourier Embedded U-Shaped Network for Image Denoising. Entropy, 25(10), 1418. https://doi.org/10.3390/e25101418