A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model
Abstract
:1. Introduction
2. The Experimental Setup
3. Joint Probability Distribution Function of and
3.1. pdf of
3.2. pdf of
4. Comparison with the Analysis in Terms of Exclusion Region
5. Discussion, Conclusions, and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diosi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 1987, 120, 377–381. [Google Scholar] [CrossRef]
- Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 1989, 40, 1165. [Google Scholar] [CrossRef] [PubMed]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470. [Google Scholar] [CrossRef] [PubMed]
- Pearle, P. Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 1989, 39, 2277. [Google Scholar] [CrossRef] [PubMed]
- Ghirardi, G.C.; Pearle, P.; Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 1990, 42, 78. [Google Scholar] [CrossRef]
- Pearle, P.; Squires, E. Bound state excitation, nucleon decay experiments and models of wave function collapse. Phys. Rev. Lett. 1994, 73, 1. [Google Scholar] [CrossRef]
- Bassi, A.; Ghirardi, G. Dynamical reduction models. Phys. Rep. 2003, 379, 257–426. [Google Scholar] [CrossRef]
- Bassi, A.; Lochan, K.; Satin, S.; Singh, T.P.; Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 2013, 85, 471. [Google Scholar] [CrossRef]
- Kovachy, T.; Asenbaum, P.; Overstreet, C.; Donnelly, C.; Dickerson, S.; Sugarbaker, A.; Hogan, J.; Kasevich, M. Quantum superposition at the half-metre scale. Nature 2015, 528, 530–533. [Google Scholar] [CrossRef]
- Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. Matter–wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Phys. Chem. Chem. Phys. 2013, 15, 14696–14700. [Google Scholar] [CrossRef] [Green Version]
- Toroš, M.; Bassi, A. Bounds on quantum collapse models from matter-wave interferometry: Calculational details. J. Phys. A Math. Theor. 2018, 51, 115302. [Google Scholar] [CrossRef]
- Lee, K.C.; Sprague, M.R.; Sussman, B.J.; Nunn, J.; Langford, N.K.; Jin, X.M.; Champion, T.; Michelberger, P.; Reim, K.F.; England, D.; et al. Entangling macroscopic diamonds at room temperature. Science 2011, 334, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Belli, S.; Bonsignori, R.; D’Auria, G.; Fant, L.; Martini, M.; Peirone, S.; Donadi, S.; Bassi, A. Entangling macroscopic diamonds at room temperature: Bounds on the continuous-spontaneous-localization parameters. Phys. Rev. A 2016, 94, 012108. [Google Scholar] [CrossRef]
- Kovachy, T.; Hogan, J.M.; Sugarbaker, A.; Dickerson, S.M.; Donnelly, C.A.; Overstreet, C.; Kasevich, M.A. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett. 2015, 114, 143004. [Google Scholar] [CrossRef]
- Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A. Improved noninterferometric test of collapse models using ultracold cantilevers. Phys. Rev. Lett. 2017, 119, 110401. [Google Scholar] [CrossRef] [PubMed]
- Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. A superconducting quantum interference device based read-out of a subattonewton force sensor operating at millikelvin temperatures. Appl. Phys. Lett. 2011, 98, 133105. [Google Scholar] [CrossRef]
- Vinante, A.; for the AURIGA Collaboration. Present performance and future upgrades of the AURIGA capacitive readout. Class. Quantum Gravity 2006, 23, S103. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 2016, 116, 131103. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Auger, G.; Baird, J.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett. 2016, 116, 231101. [Google Scholar] [CrossRef] [Green Version]
- Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A.; et al. Beyond the required LISA free-fall performance: New LISA Pathfinder results down to 20 μHz. Phys. Rev. Lett. 2018, 120, 061101. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.L.; Vinante, A. Bulk heating effects as tests for collapse models. Phys. Rev. A 2018, 97, 052119. [Google Scholar] [CrossRef]
- Bahrami, M. Testing collapse models by a thermometer. Phys. Rev. A 2018, 97, 052118. [Google Scholar] [CrossRef]
- Carlesso, M.; Bassi, A.; Falferi, P.; Vinante, A. Experimental bounds on collapse models from gravitational wave detectors. Phys. Rev. D 2016, 94, 124036. [Google Scholar] [CrossRef]
- Piscicchia, K.; Bassi, A.; Curceanu, C.; Grande, R.D.; Donadi, S.; Hiesmayr, B.C.; Pichler, A. CSL collapse model mapped with the spontaneous radiation. Entropy 2017, 19, 319. [Google Scholar] [CrossRef]
- Donadi, S.; Piscicchia, K.; Curceanu, C.; Diósi, L.; Laubenstein, M.; Bassi, A. Underground test of gravity-related wave function collapse. Nat. Phys. 2021, 17, 74–78. [Google Scholar] [CrossRef]
- Donadi, S.; Piscicchia, K.; Del Grande, R.; Curceanu, C.; Laubenstein, M.; Bassi, A. Novel CSL bounds from the noise-induced radiation emission from atoms. Eur. Phys. J. C 2021, 81, 773. [Google Scholar] [CrossRef]
- Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Bhimani, K.H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T.S.; et al. Search for Spontaneous Radiation from Wave Function Collapse in the Majorana Demonstrator. Phys. Rev. Lett. 2022, 129, 080401. [Google Scholar] [CrossRef]
- Adler, S.L. Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. A Math. Theor. 2007, 40, 2935. [Google Scholar] [CrossRef]
- Toroš, M.; Gasbarri, G.; Bassi, A. Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry. Phys. Lett. A 2017, 381, 3921–3927. [Google Scholar] [CrossRef] [Green Version]
- Neder, H.; Heusser, G.; Laubenstein, M. Low level γ-ray germanium-spectrometer to measure very low primordial radionuclide concentrations. Appl. Radiat. Isot. 2000, 53, 191–195. [Google Scholar] [CrossRef]
- Heusser, G.; Laubenstein, M.; Neder, H. Low-level germanium gamma-ray spectrometry at the μBq/kg level and future developments towards higher sensitivity. Radioact. Environ. 2006, 8, 495–510. [Google Scholar]
- Boswell, M.; Chan, Y.D.; Detwiler, J.A.; Finnerty, P.; Henning, R.; Gehman, V.M.; Johnson, R.A.; Jordan, D.V.; Kazkaz, K.; Knapp, M.; et al. MaGe-a Geant4-based Monte Carlo application framework for low-background germanium experiments. IEEE Trans. Nucl. Sci. 2011, 58, 1212–1220. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Aprile, E.; Angle, J.; Arneodo, F.; Baudis, L.; Bernstein, A.; Bolozdynya, A.; Brusov, P.; Coelho, L.; Dahl, C.; DeViveiros, L.; et al. Design and performance of the XENON10 dark matter experiment. Astropart. Phys. 2011, 34, 679–698. [Google Scholar] [CrossRef]
- Adler, S.; Bassi, A. Collapse models with non-white noises. J. Phys. A Math. Theor. 2007, 40, 15083. [Google Scholar] [CrossRef]
- Donadi, S.; Bassi, A. The emission of electromagnetic radiation from a quantum system interacting with an external noise: A general result. J. Phys. A Math. Theor. 2015, 48, 035305. [Google Scholar] [CrossRef]
- Carlesso, M.; Ferialdi, L.; Bassi, A. Colored collapse models from the non-interferometric perspective. Eur. Phys. J. D 2018, 72, 159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscicchia, K.; Porcelli, A.; Bassi, A.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Derakhshani, M.; et al. A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model. Entropy 2023, 25, 295. https://doi.org/10.3390/e25020295
Piscicchia K, Porcelli A, Bassi A, Bazzi M, Bragadireanu M, Cargnelli M, Clozza A, De Paolis L, Del Grande R, Derakhshani M, et al. A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model. Entropy. 2023; 25(2):295. https://doi.org/10.3390/e25020295
Chicago/Turabian StylePiscicchia, Kristian, Alessio Porcelli, Angelo Bassi, Massimiliano Bazzi, Mario Bragadireanu, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Maaneli Derakhshani, and et al. 2023. "A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model" Entropy 25, no. 2: 295. https://doi.org/10.3390/e25020295
APA StylePiscicchia, K., Porcelli, A., Bassi, A., Bazzi, M., Bragadireanu, M., Cargnelli, M., Clozza, A., De Paolis, L., Del Grande, R., Derakhshani, M., Lajos, D., Donadi, S., Guaraldo, C., Iliescu, M., Laubenstein, M., Manti, S., Marton, J., Miliucci, M., Napolitano, F., ... Curceanu, C. (2023). A Novel Approach to Parameter Determination of the Continuous Spontaneous Localization Collapse Model. Entropy, 25(2), 295. https://doi.org/10.3390/e25020295