Correcting Coherent Errors by Random Operation on Actual Quantum Hardware
Abstract
:1. Introduction
2. CPT Maps on the Bloch Sphere
3. Single-Qubit Quantum Process Tomography
3.1. CNOT Noisy Channel
3.2. Random Unitaries
4. Error Correction by Randomization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Cartan’s KAK Decomposition of the Unitary Group
Appendix B. CNOT Noisy Channel Ccoherent Errors Correction
References
- Benenti, G.; Casati, G.; Rossini, D.; Strini, G. Principles of Quantum Computation and Information (A Comprehensive Textbook); World Scientific: Singapore, 2019. [Google Scholar]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Daley, A.J.; Bloch, I.; Kokail, C.; Flannigan, S.; Pearson, N.; Troyer, M.; Zoller, P. Practical quantum advantage in quantum simulation. Nature 2022, 607, 667–676. [Google Scholar] [CrossRef]
- Zhou, Y.; Stoudenmire, E.M.; Waintal, X. What Limits the Simulation of Quantum Computers? Phys. Rev. X 2020, 10, 041038. [Google Scholar] [CrossRef]
- Cross, A.W.; Bishop, L.S.; Sheldon, S.; Nation, P.D.; Gambetta, J.M. Validating quantum computers using randomized model circuits. Phys. Rev. A 2019, 100, 032328. [Google Scholar] [CrossRef]
- Pizzamiglio, A.; Chang, S.Y.; Bondani, M.; Montangero, S.; Gerace, D.; Benenti, G. Dynamical Localization Simulated on Actual Quantum Hardware. Entropy 2021, 23, 654. [Google Scholar] [CrossRef]
- Georgeot, B.; Shepelyansky, D.L. Quantum chaos border for quantum computing. Phys. Rev. E 2000, 62, 3504–3507. [Google Scholar] [CrossRef]
- Georgeot, B.; Shepelyansky, D.L. Emergence of quantum chaos in the quantum computer core and how to manage it. Phys. Rev. E 2000, 62, 6366–6375. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Shepelyansky, D.L. Emergence of Fermi-Dirac thermalization in the quantum computer core. Eur. Phys. J. D 2001, 17, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Benenti, G.; Casati, G.; Montangero, S.; Shepelyansky, D.L. Efficient Quantum Computing of Complex Dynamics. Phys. Rev. Lett. 2001, 87, 227901. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Montangero, S.; Shepelyansky, D.L. Dynamical localization simulated on a few-qubit quantum computer. Phys. Rev. A 2003, 67, 052312. [Google Scholar] [CrossRef]
- Montangero, S.; Benenti, G.; Fazio, R. Dynamics of Entanglement in Quantum Computers with Imperfections. Phys. Rev. Lett. 2003, 91, 187901. [Google Scholar] [CrossRef]
- Henry, M.K.; Emerson, J.; Martinez, R.; Cory, D.G. Localization in the quantum sawtooth map emulated on a quantum-information processor. Phys. Rev. A 2006, 74, 062317. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G. Quantum chaos, decoherence and quantum computation. La Riv. Del Nuovo Cim. 2007, 30, 449–484. [Google Scholar] [CrossRef]
- Greenbaum, D.; Dutton, Z. Modeling coherent errors in quantum error correction. Quantum Sci. Technol. 2017, 3, 015007. [Google Scholar] [CrossRef]
- Majumder, S.; Yale, C.G.; Morris, T.D.; Lobser, D.S.; Burch, A.D.; Chow, M.N.H.; Revelle, M.C.; Clark, S.M.; Pooser, R.C. Characterizing and mitigating coherent errors in a trapped ion quantum processor using hidden inverses. arXiv 2022, arXiv:2205.14225. [Google Scholar] [CrossRef]
- Kern, O.; Alber, G.; Shepelyansky, D.L. Quantum error correction of coherent errors by randomization. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 2005, 32, 153–156. [Google Scholar] [CrossRef]
- Wallman, J.J.; Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 2016, 94, 052325. [Google Scholar] [CrossRef]
- Hashim, A.; Naik, R.K.; Morvan, A.; Ville, J.L.; Mitchell, B.; Kreikebaum, J.M.; Davis, M.; Smith, E.; Iancu, C.; O’Brien, K.P.; et al. Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor. Phys. Rev. X 2021, 11, 041039. [Google Scholar] [CrossRef]
- Ware, M.; Ribeill, G.; Ristè, D.; Ryan, C.A.; Johnson, B.; da Silva, M.P. Experimental Pauli-frame randomization on a superconducting qubit. Phys. Rev. A 2021, 103, 042604. [Google Scholar] [CrossRef]
- Pozniak, M.; Zyczkowski, K.; Kus, M. Composed ensembles of random unitary matrices. J. Phys. A Math. Gen. 1998, 31, 1059. [Google Scholar] [CrossRef]
- Weinstein, Y.S.; Hellberg, C.S. Entanglement Generation of Nearly Random Operators. Phys. Rev. Lett. 2005, 95, 030501. [Google Scholar] [CrossRef] [PubMed]
- Shaghaghi, V.; Palma, G.M.; Benenti, G. Extracting work from random collisions: A model of a quantum heat engine. Phys. Rev. E 2022, 105, 034101. [Google Scholar] [CrossRef]
- Vatan, F.; Williams, C. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 2004, 69, 032315. [Google Scholar] [CrossRef]
- Khaneja, N.; Glaser, S.J. Cartan decomposition of SU (2n) and control of spin systems. Chem. Phys. 2001, 267, 11–23. [Google Scholar] [CrossRef]
- Khaneja, N.; Brockett, R.; Glaser, S.J. Time optimal control in spin systems. Phys. Rev. A 2001, 63, 032308. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenedese, G.; Benenti, G.; Bondani, M. Correcting Coherent Errors by Random Operation on Actual Quantum Hardware. Entropy 2023, 25, 324. https://doi.org/10.3390/e25020324
Cenedese G, Benenti G, Bondani M. Correcting Coherent Errors by Random Operation on Actual Quantum Hardware. Entropy. 2023; 25(2):324. https://doi.org/10.3390/e25020324
Chicago/Turabian StyleCenedese, Gabriele, Giuliano Benenti, and Maria Bondani. 2023. "Correcting Coherent Errors by Random Operation on Actual Quantum Hardware" Entropy 25, no. 2: 324. https://doi.org/10.3390/e25020324
APA StyleCenedese, G., Benenti, G., & Bondani, M. (2023). Correcting Coherent Errors by Random Operation on Actual Quantum Hardware. Entropy, 25(2), 324. https://doi.org/10.3390/e25020324