Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Boolean Network Models
2.2. Characterizing the Critical Boundary
3. Results
3.1. Critical Boundaries in Finite Heterogeneous Random Networks
3.2. Estimating the Critical Boundary for Empirical Models
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RBN | Random Boolean Network |
MCC | Matthews correlation coefficient |
ROC | Receiver operating characteristic |
PRC | Precision recall curve |
AUC | Area under curve |
AUROC | Area under receiver operating characteristic |
AUPRC | Area under precision recall curve |
IQR | Interquartile range |
Appendix A. Formal Definition of ke
References
- Thomas, R.; Kaufman, M. Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos Interdiscip. J. Nonlinear Sci. 2001, 11, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Kaufman, M. Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos Interdiscip. J. Nonlinear Sci. 2001, 11, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of complex networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Gates, A.J.; Rocha, L.M. Control of complex networks requires both structure and dynamics. Sci. Rep. 2016, 6, 24456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newby, E.; Tejeda Zañudo, J.G.; Albert, R. Structure-based approach to identifying small sets of driver nodes in biological networks. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 063102. [Google Scholar] [CrossRef]
- Rozum, J.C.; Albert, R. Leveraging network structure in nonlinear control. NPJ Syst. Biol. Appl. 2022, 8, 36. [Google Scholar] [CrossRef]
- Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef]
- Aldana, M. Boolean dynamics of networks with scale-free topology. Phys. D Nonlinear Phenom. 2003, 185, 45–66. [Google Scholar] [CrossRef]
- Bornholdt, S.; Kauffman, S. Ensembles, dynamics, and cell types: Revisiting the statistical mechanics perspective on cellular regulation. J. Theor. Biol. 2019, 467, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Derrida, B.; Pomeau, Y. Random networks of automata: A simple annealed approximation. EPL (Europhys. Lett.) 1986, 1, 45. [Google Scholar] [CrossRef]
- Derrida, B.; Stauffer, D. Phase transitions in two-dimensional Kauffman cellular automata. EPL (Europhys. Lett.) 1986, 2, 739. [Google Scholar] [CrossRef]
- Shmulevich, I.; Kauffman, S.A. Activities and sensitivities in Boolean network models. Phys. Rev. Lett. 2004, 93, 048701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shmulevich, I.; Kauffman, S.A.; Aldana, M. Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 2005, 102, 13439–13444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balleza, E.; Alvarez-Buylla, E.R.; Chaos, A.; Kauffman, S.; Shmulevich, I.; Aldana, M. Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS ONE 2008, 3, e2456. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sosa, C.; Huang, S.; Aldana, M. Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability. PLoS Comput. Biol. 2012, 8, e1002669. [Google Scholar] [CrossRef] [Green Version]
- Daniels, B.C.; Kim, H.; Moore, D.; Zhou, S.; Smith, H.B.; Karas, B.; Kauffman, S.A.; Walker, S.I. Criticality Distinguishes the Ensemble of Biological Regulatory Networks. Phys. Rev. Lett. 2018, 121, 138102. [Google Scholar] [CrossRef] [Green Version]
- Luque, B.; Solé, R.V. Phase transitions in random networks: Simple analytic determination of critical points. Phys. Rev. E 1997, 55, 257. [Google Scholar] [CrossRef] [Green Version]
- Fox, J.J.; Hill, C.C. From topology to dynamics in biochemical networks. Chaos Interdiscip. J. Nonlinear Sci. 2001, 11, 809–815. [Google Scholar] [CrossRef]
- Oosawa, C.; Savageau, M.A. Effects of alternative connectivity on behavior of randomly constructed Boolean networks. Phys. D Nonlinear Phenom. 2002, 170, 143–161. [Google Scholar] [CrossRef]
- Gates, A.J.; Correia, R.B.; Wang, X.; Rocha, L.M. The effective graph reveals redundancy, canalization, and control pathways in biochemical regulation and signaling. Proc. Natl. Acad. Sci. USA 2021, 118, e2022598118. [Google Scholar] [CrossRef]
- Peixoto, T.P. The phase diagram of random Boolean networks with nested canalizingfunctions. Eur. Phys. J. B 2010, 78, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Liu, P.; Ching, W.K.; Akutsu, T. On the Distribution of Successor States in Boolean Threshold Networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4147–4159. [Google Scholar] [CrossRef] [PubMed]
- Rohlf, T.; Bornholdt, S. Criticality in random threshold networks: Annealed approximation and beyond. Phys. A Stat. Mech. Appl. 2002, 310, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Zañudo, J.G.T.; Aldana, M.; Martínez-Mekler, G. Boolean Threshold Networks: Virtues and Limitations for Biological Modeling. In Information Processing and Biological Systems; Niiranen, S., Ribeiro, A., Eds.; Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2011; pp. 113–151. [Google Scholar] [CrossRef] [Green Version]
- Waddington, C.H. Canalization of development and the inheritance of acquired characters. Nature 1942, 150, 563–565. [Google Scholar] [CrossRef]
- Reichhardt, C.J.O.; Bassler, K.E. Canalization and symmetry in Boolean models for genetic regulatory networks. J. Phys. A Math. Theor. 2007, 40, 4339–4350. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Adeyeye, J.O.; Murrugarra, D.; Aguilar, B.; Laubenbacher, R. Boolean nested canalizing functions: A comprehensive analysis. Theor. Comput. Sci. 2013, 481, 24–36. [Google Scholar] [CrossRef]
- Marques-Pita, M.; Rocha, L.M. Canalization and control in automata networks: Body segmentation in Drosophila melanogaster. PLoS ONE 2013, 8, e55946. [Google Scholar] [CrossRef] [Green Version]
- Kadelka, C.; Kuipers, J.; Laubenbacher, R. The influence of canalization on the robustness of Boolean networks. Phys. D Nonlinear Phenom. 2017, 353–354, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Kadelka, C.; Keilty, B.; Laubenbacher, R. Collectively canalizing Boolean functions. arXiv 2020, arXiv:2008.13741. [Google Scholar] [CrossRef]
- Rocha, L.M. On the feasibility of dynamical analysis of network models of biochemical regulation. Bioinformatics 2022, 38, 3674–3675. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Liu, Y.; Lou, J. Fault detection and pinning control of Boolean networks. Appl. Math. Comput. 2022, 429, 127232. [Google Scholar] [CrossRef]
- Manicka, S.; Marques-Pita, M.; Rocha, L.M. Effective connectivity determines the critical dynamics of biochemical networks. J. R. Soc. Interface 2022, 19, 20210659. [Google Scholar] [CrossRef]
- Helikar, T.; Kowal, B.; McClenathan, S.; Bruckner, M.; Rowley, T.; Madrahimov, A.; Wicks, B.; Shrestha, M.; Limbu, K.; Rogers, J.A. The cell collective: Toward an open and collaborative approach to systems biology. BMC Syst. Biol. 2012, 6, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrida, B.; Weisbuch, G. Evolution of overlaps between configurations in random Boolean networks. J. Phys. 1986, 47, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.E.; Sawhill, B.K.; Wuensche, A.; Kauffman, S. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 2002, 7, 23–40. [Google Scholar] [CrossRef]
- Correia, R.B.; Gates, A.J.; Wang, X.; Rocha, L.M. CANA: A python package for quantifying control and canalization in Boolean networks. Front. Physiol. 2018, 9, 1046. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 2000, 16, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Gershenson, C. Updating schemes in random Boolean networks: Do they really matter. In Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems; MIT Press: Cambridge, MA, USA, 2004; pp. 238–243. [Google Scholar]
- Trinh, V.G.; Hiraishi, K. A Study on Attractors of Generalized Asynchronous Random Boolean Networks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2020, E103-A, 987–994. [Google Scholar] [CrossRef]
- Greil, F.; Drossel, B. Dynamics of Critical Kauffman Networks under Asynchronous Stochastic Update. Phys. Rev. Lett. 2005, 95, 048701. [Google Scholar] [CrossRef] [Green Version]
- Rozum, J.C.; Zañudo, J.G.T.; Gan, X.; Deritei, D.; Albert, R. Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. Sci. Adv. 2021, 7, eabf8124. [Google Scholar] [CrossRef] [PubMed]
- Gates, A.J.; Wood, I.B.; Hetrick, W.P.; Ahn, Y.Y. Element-centric clustering comparison unifies overlaps and hierarchy. Sci. Rep. 2019, 9, 8574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, F.X.; Rozum, J.C.; Marcus, A.M.; Rocha, L.M. Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks. Entropy 2023, 25, 374. https://doi.org/10.3390/e25020374
Costa FX, Rozum JC, Marcus AM, Rocha LM. Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks. Entropy. 2023; 25(2):374. https://doi.org/10.3390/e25020374
Chicago/Turabian StyleCosta, Felipe Xavier, Jordan C. Rozum, Austin M. Marcus, and Luis M. Rocha. 2023. "Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks" Entropy 25, no. 2: 374. https://doi.org/10.3390/e25020374
APA StyleCosta, F. X., Rozum, J. C., Marcus, A. M., & Rocha, L. M. (2023). Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks. Entropy, 25(2), 374. https://doi.org/10.3390/e25020374