A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods
Abstract
:1. Introduction
2. The Variational Quantum Linear Solver
2.1. The Variational Ansatz
2.2. Matrix Pauli Decomposition
2.3. Right-Hand Side Preparation
3. Computational Details
4. Training Algorithm
5. Applications
5.1. Application 1: The Poisson Equation
- qc = QuantumCircuit (4)
- U = [0.1,2,2,2,2,2,2,0.1]
- U /= np.linalg.norm (U)
- qc.isometry (U, [0, 1, 2], [])
- qc = transpile (qc, basis_gates = [’u3’, ’cx’], optimization_level=3)
5.1.1. Poisson Case 1: Parabolic Solution with Homogeneous Boundary Conditions
5.1.2. Poisson Case 2: Cubic Solution with Non-Homogeneous B.C.
5.2. Application 2: The Heat Equation
5.3. Application 3: The Wave Equation
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Preparation of the Stiffness Matrix
Appendix A.1. Implementing the Recursion Using GHZ States
Appendix A.2. Preparation of the m=3 Stiffness Matrix
Appendix A.3. Preparation of a General m Qubit Stiffness Matrix
References
- Preskill, J. Quantum computing and the entanglement frontier. arXiv 2012, arXiv:1203.5813. Available online: http://arxiv.org/abs/1203.5813 (accessed on 20 February 2023).
- Harrow, A.W.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. Available online: https://www.nature.com/articles/s41586-019-1666-5 (accessed on 20 February 2023).
- Connor, E. The New Light-Based Quantum Computer Jiuzhang Has Achieved Quantum Supremacy. 2020. Available online: https://www.sciencenews.org/article/new-light-based-quantum-computer-jiuzhang-supremacy (accessed on 20 February 2023).
- Head-Marsden, K.; Flick, J.; Ciccarino, C.J.; Narang, P. Quantum information and algorithms for correlated quantum matter. Chem. Rev. 2021, 121, 3061–3120. [Google Scholar] [CrossRef] [PubMed]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007; ISBN 9780199213900. [Google Scholar]
- Clerk, A.A.; Devoret, M.H.; Girvin, S.M.; Marquardt, F.; Schoelkopf, R.J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 2010, 82, 1155–1208. [Google Scholar] [CrossRef]
- Lidar, D.A. Lecture notes on the theory of open quantum systems. arXiv 2019, arXiv:1902.00967. [Google Scholar]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef] [Green Version]
- Kandala, A.; Temme, K.; Córcoles, A.D.; Mezzacapo, A.; Chow, J.M.; Gambetta, J.M. Error mitigation extends the computational reach of a noisy quantum processor. Nature 2019, 567, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArdle, S.; Yuan, X.; Benjamin, S. Error-mitigated digital quantum simulation. Phys. Rev. Lett. 2019, 122, 180501. [Google Scholar] [CrossRef] [Green Version]
- Smart, S.E.; Mazziotti, D.A. Quantum-classical hybrid algorithm using an error-mitigating n -representability condition to compute the mott metal-insulator transition. Phys. Rev. A 2019, 100, 022517. [Google Scholar] [CrossRef] [Green Version]
- Smart, S.E.; Boyn, J.N.; Mazziotti, D.A. Resolving correlated states of benzyne with an error-mitigated contracted quantum eigensolver. Phys. Rev. A 2022, 105, 022405. [Google Scholar] [CrossRef]
- Endo, S.; Cai, Z.; Benjamin, S.C.; Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 2021, 90, 032001. [Google Scholar] [CrossRef]
- Smart, S.E.; Hu, Z.; Kais, S.; Mazziotti, D.A. Relaxation of stationary states on a quantum computer yields a unique spectroscopic fingerprint of the computer’s noise. Commun. Phys. 2022, 5, 8. [Google Scholar] [CrossRef]
- Aleksandrowicz, G.; Alexander, T.; Barkoutsosa, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.; Cabrera-Hernández, F.; Carballo-Franquis, J.; Chen, A.; Chen, C.; et al. Qiskit: An Open-Source Framework for Quantum Computing. 2019. Available online: https://doi.org/10.5281/zenodo.2562111 (accessed on 10 May 2022).
- Amazon, Amazon Braket. Available online: https://aws.amazon.com/braket/ (accessed on 10 May 2022).
- IBM, Learning Quantum Computation Using Qiskit. Available online: http://qiskit.org/textbook (accessed on 1 July 2021).
- Albornoz, C.; Alonso, G.; Andrenkov, P.A.M.; Asadi, A. Anothers, Xanadu Quantum Codebook. 2021. Available online: https://codebook.xanadu.ai (accessed on 1 July 2022).
- Qbraid. Qbraid: Cloud-Based ide for Quantum Computing. Available online: https://qbraid.com (accessed on 10 July 2022).
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pudenz, K.L.; Lidar, D.A. Quantum adiabatic machine learning. Quantum Inf. Process. 2013, 12, 2027–2070. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631–633. [Google Scholar] [CrossRef] [Green Version]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef] [Green Version]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Altaisky, M.V.; Zolnikova, N.N.; Kaputkina, N.E.; Krylov, V.A.; Lozovik, Y.E.; Dattani, N.S. Towards a feasible implementation of quantum neural networks using quantum dots. Appl. Phys. Lett. 2016, 108, 103108. [Google Scholar] [CrossRef] [Green Version]
- Dunjko, V.; Taylor, J.M.; Briegel, H.J. Framework for learning agents in quantum environments. arXiv 2015, arXiv:1507.08482. [Google Scholar]
- Alvarez-Rodriguez, U.; Lamata, L.; Escandell-Montero, P.; Martín-Guerrero, J.D.; Solano, E. Supervised quantum learning without measurements. Sci. Rep. 2017, 7, 1–9. [Google Scholar]
- Lamata, L. Basic protocols in quantum reinforcement learning with superconducting circuits. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiebe, N.; Braun, D.; Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 2012, 109, 050505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. Prediction by linear regression on a quantum computer. Phys. Rev. A 2016, 94, 022342. [Google Scholar] [CrossRef] [Green Version]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.W.; Childs, A.M.; Kothari, R. Hamiltonian simulation with nearly optimal dependence on all parameters. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 17–20 October 2015; pp. 792–809. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Fitzsimons, J.K.; Fitzsimons, J.F. Quantum-assisted Gaussian process regression. Phys. Rev. A 2019, 99, 052331. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Song, C.; Chen, M.C.; Xia, B.; Liu, W.; Guo, Q.; Zhang, L.; Xu, D.; Deng, H.; Huang, K.; et al. Solving systems of linear equations with a superconducting quantum processor. Phys. Rev. Lett. 2017, 118, 210504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Joo, J.; Lee, S. Hybrid quantum linear equation algorithm and its experimental test on ibm quantum experience. Sci. Rep. 2019, 9, 4778. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Cao, Y.; Yao, X.; Li, Z.; Ju, C.; Chen, H.; Peng, X.; Kais, S.; Du, J. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 2014, 89, 022313. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.-D.; Weedbrook, C.; Su, Z.-E.; Chen, M.-C.; Gu, M.; Zhu, M.-J.; Li, L.; Liu, N.; Lu, C.; Pan, J. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 2013, 110, 30501. [Google Scholar] [CrossRef] [Green Version]
- Barz, S.; Kassal, I.; Ringbauer, M.; Lipp, Y.O.; Dakić, B.; Aspuru-Guzik, A.; Walther, P. A two-qubit photonic quantum processor and its application to solving systems of linear equations. Sci. Rep. 2014, 4, 6115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.; Kong, X.; Wei, S.; Wang, B.; Xin, T.; Long, G. Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing. Phys. Rev. A 2019, 99, 012320. [Google Scholar] [CrossRef] [Green Version]
- Anschuetz, E.; Olson, J.; Aspuru-Guzik, A.; Cao, Y. Variational quantum factoring. In Quantum Technology and Optimization Problems; Feld, S., Linnhoff-Popien, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 74–85. [Google Scholar]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.; Zhou, X.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferova, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.D.; et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef] [Green Version]
- Higgott, O.; Wang, D.; Brierley, S. Variational quantum computation of excited states. Quantum 2019, 3, 156. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.; Endo, S.; McArdle, S.; Yuan, X.; Benjamin, S.C. Variational quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A 2019, 99, 062304. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Benjamin, S.C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 2017, 7, 021050. [Google Scholar] [CrossRef] [Green Version]
- Kokail, C.; Maier, C.; van Bijnen, R.; Brydges, T.; Joshi, M.K.; Jurcevic, P.; Muschik, C.A.; Silvi, P.; Blatt, R.; Roos, C.F.; et al. Self-verifying variational quantum simulation of lattice models. Nature 2019, 569, 55–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heya, K.; Nakanishi, K.M.; Mitarai, K.; Fujii, K. Subspace variational quantum simulator. arXiv 2019, arXiv:1904.08566. [Google Scholar]
- Cirstoiu, C.; Holmes, Z.; Iosue, J.; Cincio, L.; Coles, P.J.; Sornborger, A. Variational fast forwarding for quantum simulation beyond the coherence time. npj Quantum Inf. 2020, 6, 82. [Google Scholar] [CrossRef]
- Yuan, X.; Endo, S.; Zhao, Q.; Li, Y.; Benjamin, S.C. Theory of variational quantum simulation. Quantum 2019, 3, 191. [Google Scholar] [CrossRef]
- Romero, J.; Olson, J.P.; Aspuru-Guzik, A. Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2017, 2, 045001. [Google Scholar] [CrossRef] [Green Version]
- LaRose, R.; Tikku, A.; O’Neel-Judy, É.; Cincio, L.; Coles, P.J. Variational quantum state diagonalization. npj Quantum Inf. 2019, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Prieto, C.; Garcí a-Martín, D.; Latorre, J.I. Quantum singular value decomposer. Phys. Rev. A 2020, 101, 062310. [Google Scholar] [CrossRef]
- Cerezo, M.; Sharma, K.; Arrasmith, A.; Coles, P.J. Variational quantum state eigensolver. npj Quantum Inf. 2022, 8, 113. [Google Scholar] [CrossRef]
- Khatri, S.; LaRose, R.; Poremba, A.; Cincio, L.; Sornborger, A.T.; Coles, P.J. Quantum-assisted quantum compiling. Quantum 2019, 3, 140. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.; Benjamin, S.C. Robust quantum compilation and circuit optimisation via energy minimisation. Quantum 2022, 6, 628. [Google Scholar] [CrossRef]
- Arrasmith, A.; Cincio, L.; Sornborger, A.T.; Zurek, W.H.; Coles, P.J. Variational consistent histories as a hybrid algorithm for quantum foundations. Nat. Commun. 2019, 10, 3438. [Google Scholar] [CrossRef] [Green Version]
- Cerezo, M.; Poremba, A.; Cincio, L.; Coles, P.J. Variational quantum fidelity estimation. Quantum 2020, 4, 248. [Google Scholar] [CrossRef] [Green Version]
- Koczor, B.; Endo, S.; Jones, T.; Matsuzaki, Y.; Benjamin, S. Variational-state quantum metrology. New J. Phys. 2020, 22, 083038. [Google Scholar] [CrossRef]
- Bravo-Prieto, C.; LaRose, R.; Cerezo, M.; Subasi, Y.; Cincio, L.; Coles, P.J. Variational Quantum Linear Solver. arXiv 2019, arXiv:1909.05820. [Google Scholar] [CrossRef]
- Bravo-Prieto, C.; LaRose, R.; Cerezo, M.; Subaşı, Y.; Cincio, L.; Coles, P.J. Variational quantum linear solver: A hybrid algorithm for linear systems. Bull. Am. Phys. Soc. 2020, arXiv:1909.05820v2. [Google Scholar] [CrossRef]
- Cincio, L.; Subaşı, Y.; Sornborger, A.T.; Coles, P.J. Learning the quantum algorithm for state overlap. New J. Phys. 2018, 20, 13022. [Google Scholar] [CrossRef]
- Pesce, R.M.N.; Stevenson, P.D. H2zixy: Pauli spin matrix decomposition of real symmetric matrices. arXiv 2021, arXiv:2111.00627. [Google Scholar]
- Pellow-Jarman, A.; Sinayskiy, I.; Pillay, A.; Petruccione, F. A comparison of various classical optimizers for a variational quantum linear solver. Quantum Inf. Process. 2021, 20, 202. [Google Scholar] [CrossRef]
- Hughes, T.J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- Soklakov, A.N.; Schack, R. Efficient state preparation for a register of quantum bits. Phys. Rev. A 2006, 73, 012307. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum Random Access Memory. Phys. Rev. Lett. 2008, 100, 160501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaronson, S. Read the fine print. Nat. Phys. 2015, 11, 291–293. [Google Scholar] [CrossRef]
- Bang, J.; Dutta, A.; Lee, S.W.; Kim, J. Optimal usage of quantum random access memory in quantum machine learning. Phys. Rev. A 2019, 99, 012326. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trahan, C.J.; Loveland, M.; Davis, N.; Ellison, E. A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods. Entropy 2023, 25, 580. https://doi.org/10.3390/e25040580
Trahan CJ, Loveland M, Davis N, Ellison E. A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods. Entropy. 2023; 25(4):580. https://doi.org/10.3390/e25040580
Chicago/Turabian StyleTrahan, Corey Jason, Mark Loveland, Noah Davis, and Elizabeth Ellison. 2023. "A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods" Entropy 25, no. 4: 580. https://doi.org/10.3390/e25040580
APA StyleTrahan, C. J., Loveland, M., Davis, N., & Ellison, E. (2023). A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods. Entropy, 25(4), 580. https://doi.org/10.3390/e25040580