Considerations on the Relativity of Quantum Irrealism
Abstract
:1. Introduction
2. Methods
2.1. Quantum Irrealism
2.2. Lorentz Boosts and Wigner Rotations
3. Results
3.1. MZI from a Boosted Frame
3.2. Boost Effects on Spin Irreality
3.3. Boost Effects on Momentum Irreality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 1935, 48, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.A.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [Green Version]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef] [Green Version]
- Hensen, B.; Kalb, N.; Blok, M.S.; Dréau, A.E.; Reiserer, A.; Vermeulen, R.F.; Schouten, R.N.; Markham, M.; Twitchen, D.J.; Goodenough, K.; et al. Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis. Sci. Rep. 2016, 6, 30289. [Google Scholar] [CrossRef] [Green Version]
- Rauch, D.; Handsteiner, J.; Hochrainer, A.; Gallicchio, J.; Friedman, A.S.; Leung, C.; Liu, B.; Bulla, L.; Ecker, S.; Steinlechner, F.; et al. Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars. Phys. Rev. Lett. 2018, 121, 080403. [Google Scholar] [CrossRef] [Green Version]
- Li, M.H.; Wu, C.; Zhang, Y.; Liu, W.Z.; Bai, B.; Liu, Y.; Zhang, W.; Zhao, Q.; Li, H.; Wang, Z.; et al. Test of Local Realism into the Past without Detection and Locality Loopholes. Phys. Rev. Lett. 2018, 121, 080404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilobran, A.L.O.; Angelo, R.M. A measure of physical reality. Europhys. Lett. 2015, 112, 40005. [Google Scholar] [CrossRef] [Green Version]
- Dieguez, P.R.; Guimarães, J.R.; Peterson, J.P.S.; Angelo, R.M.; Serra, R.M. Experimental assessment of physical realism in a quantum-controlled device. Commun. Phys. 2022, 5, 82. [Google Scholar] [CrossRef]
- Wigner, E.P. Remarks on the Mind-Body Question. In The Scientist Speculates; Good, I.J., Ed.; Heineman: London, UK, 1961. [Google Scholar]
- Frauchiger, D.; Renner, R. Quantum theory cannot consistently describe the use of itself. Nat. Commun. 2018, 9, 3711. [Google Scholar] [CrossRef] [Green Version]
- Brukner, C. A No-Go Theorem for Observer-Independent Facts. Entropy 2018, 20, 350. [Google Scholar] [CrossRef] [Green Version]
- Bong, K.W.; Utreras-Alarcón, A.; Ghafari, F.; Liang, Y.C.; Tischler, N.; Cavalcanti, E.G.; Pryde, G.J.; Wiseman, H.M. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 2020, 16, 1199–1205. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys. 2019, 91, 025001. [Google Scholar] [CrossRef] [Green Version]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [Green Version]
- Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein–Podolsky-Rosen Channels. Phys. Rev. Lett. 1998, 80, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Martín-Martínez, E.; Menicucci, N.C. Cosmological quantum entanglement. Class. Quantum Grav. 2012, 29, 224003. [Google Scholar] [CrossRef]
- Marais, A.; Adams, B.; Ringsmuth, A.K.; Ferretti, M.; Gruber, J.M.; Hendrikx, R.; Schuld, M.; Smith, S.L.; Sinayskiy, I.; Krüger, T.P.J.; et al. The future of quantum biology. J. R. Soc. Interface 2018, 15, 20180640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, A.; Terno, D.R. Quantum information and relativity theory. Rev. Mod. Phys. 2004, 76, 93–123. [Google Scholar] [CrossRef] [Green Version]
- Peres, A.; Scudo, P.F.; Terno, D.R. Quantum Entropy and Special Relativity. Phys. Rev. Lett. 2002, 88, 230402. [Google Scholar] [CrossRef] [Green Version]
- Alsing, P.M.; Milburn, G. Lorentz Invariance of Entanglement. Quantum Inf. Comput. 2002, 2, 487–512. [Google Scholar] [CrossRef]
- Czachor, M. Comment on “Quantum Entropy and Special Relativity”. Phys. Rev. Lett. 2005, 94, 078901. [Google Scholar] [CrossRef] [Green Version]
- Dunningham, J.; Palge, V.; Vedral, V. Entanglement and nonlocality of a single relativistic particle. Phys. Rev. A 2009, 80, 044302. [Google Scholar] [CrossRef] [Green Version]
- Saldanha, P.L.; Vedral, V. Physical interpretation of the Wigner rotations and its implications for relativistic quantum information. New J. Phys. 2012, 14, 023041. [Google Scholar] [CrossRef] [Green Version]
- Saldanha, P.L.; Vedral, V. Wigner rotations and an apparent paradox in relativistic quantum information. Phys. Rev. A 2013, 87, 042102. [Google Scholar] [CrossRef] [Green Version]
- Taillebois, E.R.F.; Avelar, A.T. Spin-reduced density matrices for relativistic particles. Phys. Rev. A 2013, 88, 060302. [Google Scholar] [CrossRef] [Green Version]
- Zambianco, M.H.; Landulfo, A.G.S.; Matsas, G.E.A. Observer dependence of entanglement in nonrelativistic quantum mechanics. Phys. Rev. A 2019, 100, 062126. [Google Scholar] [CrossRef] [Green Version]
- Bittencourt, V.A.S.V.; Blasone, M. Single particle entanglement of a massive relativistic particle: Dirac bispinors and spin 1/2 states. J. Phys. Conf. Ser. 2020, 1612, 012003. [Google Scholar] [CrossRef]
- Bernardini, A.E.; Bittencourt, V.A.S.V.; Blasone, M. Lorentz invariant quantum concurrence for SU(2) ⊗ SU(2) spin–parity states. Eur. Phys. J. Plus 2020, 135, 320. [Google Scholar] [CrossRef]
- Gingrich, R.M.; Adami, C. Quantum Entanglement of Moving Bodies. Phys. Rev. Lett. 2002, 89, 270402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, T.F.; Shaji, A.; Sudarshan, E.C.G. Lorentz transformations that entangle spins and entangle momenta. Phys. Rev. A 2007, 75, 022101. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A. Entangled states, Lorentz transformations and spin precession in magnetic fields. J. Phys. A Math. Theor. 2009, 42, 245205. [Google Scholar] [CrossRef] [Green Version]
- Friis, N.; Bertlmann, R.A.; Huber, M.; Hiesmayr, B.C. Relativistic entanglement of two massive particles. Phys. Rev. A 2010, 81, 042114. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.; Hur, J.; Kim, J. Relativistic effects on the spin entanglement of two massive Dirac particles. Phys. Rev. A 2011, 84, 012334. [Google Scholar] [CrossRef] [Green Version]
- Palge, V.; Dunningham, J. Behavior of Werner states under relativistic boosts. Ann. Phys. 2015, 363, 275–304. [Google Scholar] [CrossRef] [Green Version]
- Palge, V.; Dunningham, J.; Groote, S.; Liivat, H. Relativistic entanglement of two particles driven by continuous product momenta. Phys. Rev. A 2018, 98, 052322. [Google Scholar] [CrossRef] [Green Version]
- Bittencourt, V.A.S.V.; Bernardini, A.E.; Blasone, M. Global Dirac bispinor entanglement under Lorentz boosts. Phys. Rev. A 2018, 97, 032106. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, X. Relativistic effect of entanglement in fermion-fermion scattering. Phys. Rev. D 2018, 97, 016011. [Google Scholar] [CrossRef] [Green Version]
- Petreca, A.T.; Cardoso, G.; Devecchi, F.P.; Angelo, R.M. Genuine multipartite entanglement and quantum coherence in an electron-positron system: Relativistic covariance. Phys. Rev. A 2022, 105, 032205. [Google Scholar] [CrossRef]
- Czachor, M. Einstein–Podolsky-Rosen-Bohm experiment with relativistic massive particles. Phys. Rev. A 1997, 55, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Chang-Young, E. Quantum entanglement under Lorentz boost. New J. Phys. 2004, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Caban, P.; Rembieliński, J. Lorentz-covariant reduced spin density matrix and Einstein–Podolsky-Rosen–Bohm correlations. Phys. Rev. A 2005, 72, 012103. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.T.; Son, E.J. Lorentz-invariant Bell’s inequality. Phys. Rev. A 2005, 71, 014102. [Google Scholar] [CrossRef] [Green Version]
- Streiter, L.F.; Giacomini, F.; Brukner, C. Relativistic Bell Test within Quantum Reference Frames. Phys. Rev. Lett. 2021, 126, 230403. [Google Scholar] [CrossRef]
- Bauke, H.; Ahrens, S.; Keitel, C.H.; Grobe, R. Relativistic spin operators in various electromagnetic environments. Phys. Rev. A 2014, 89, 052101. [Google Scholar] [CrossRef] [Green Version]
- Bauke, H.; Ahrens, S.; Keitel, C.H.; Grobe, R. What is the relativistic spin operator? New J. Phys. 2014, 16, 043012. [Google Scholar] [CrossRef]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, C. Relativistic Quantum Reference Frames: The Operational Meaning of Spin. Phys. Rev. Lett. 2019, 123, 090404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonera, C.; Kosiński, P.; Maślanka, P. Special relativity and reduced spin density matrices. Phys. Rev. A 2004, 70, 034102. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.H. The Motion of the Spinning Electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Wigner, E. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math. 1939, 40, 149–204. [Google Scholar] [CrossRef]
- O’Donnell, K.; Visser, M. Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession. Eur. J. Phys. 2011, 32, 1033–1047. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, C. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat. Commun. 2019, 10, 494. [Google Scholar] [CrossRef] [Green Version]
- Savi, M.F.; Angelo, R.M. Quantum resource covariance. Phys. Rev. A 2021, 103, 022220. [Google Scholar] [CrossRef]
- Gomes, V.S.; Angelo, R.M. Nonanomalous measure of realism-based nonlocality. Phys. Rev. A 2018, 97, 012123. [Google Scholar] [CrossRef] [Green Version]
- Fucci, D.M.; Angelo, R.M. Tripartite realism-based quantum nonlocality. Phys. Rev. A 2019, 100, 062101. [Google Scholar] [CrossRef] [Green Version]
- Orthey, A.C.; Angelo, R.M. Nonlocality, quantum correlations, and violations of classical realism in the dynamics of two noninteracting quantum walkers. Phys. Rev. A 2019, 100, 042110. [Google Scholar] [CrossRef] [Green Version]
- Dieguez, P.R.; Angelo, R.M. Information-reality complementarity: The role of measurements and quantum reference frames. Phys. Rev. A 2018, 97, 022107. [Google Scholar] [CrossRef] [Green Version]
- Engelbert, N.G.; Angelo, R.M. Hardy’s paradox as a demonstration of quantum irrealism. Found. Phys. 2020, 50, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Freire, I.S.; Angelo, R.M. Quantifying continuous-variable realism. Phys. Rev. A 2019, 100, 022105. [Google Scholar] [CrossRef] [Green Version]
- Orthey, A.C.; Angelo, R.M. Quantum realism: Axiomatization and quantification. Phys. Rev. A 2022, 105, 052218. [Google Scholar] [CrossRef]
- Costa, A.C.S.; Angelo, R.M. Information-based approach towards a unified resource theory. Quantum Inf. Process. 2020, 19, 325. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Pereira, S.T.; Angelo, R.M. Galilei covariance and Einstein’s equivalence principle in quantum reference frames. Phys. Rev. A 2015, 91, 022107. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelbert, N.G.; Angelo, R.M. Considerations on the Relativity of Quantum Irrealism. Entropy 2023, 25, 603. https://doi.org/10.3390/e25040603
Engelbert NG, Angelo RM. Considerations on the Relativity of Quantum Irrealism. Entropy. 2023; 25(4):603. https://doi.org/10.3390/e25040603
Chicago/Turabian StyleEngelbert, Nicholas G., and Renato M. Angelo. 2023. "Considerations on the Relativity of Quantum Irrealism" Entropy 25, no. 4: 603. https://doi.org/10.3390/e25040603
APA StyleEngelbert, N. G., & Angelo, R. M. (2023). Considerations on the Relativity of Quantum Irrealism. Entropy, 25(4), 603. https://doi.org/10.3390/e25040603