Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics
Abstract
:1. Introduction
2. A Non-Extensive Statistical Physics Approach (NESP)
2.1. Spatiotemporal Scaling Properties of Earthquake Swarms
2.2. Frequency-Magnitude Distribution and Seismic b-Values
2.3. The Fragment–Asperity Model for Seismic Energies
3. Recent Earthquake Swarms in Greece
3.1. Seismotectonic Setting and Earthquake Datasets
3.1.1. The 2007 Trichonis Lake Earthquake Swarm
3.1.2. The 2016 Western Crete Earthquake Swarm
3.1.3. The 2021–2022 Nisyros Earthquake Swarm
3.1.4. The 2021–2022 Thiva Earthquake Swarm
3.1.5. The 2022 Pagasetic Gulf Earthquake Swarm
3.2. Frequency-Magnitude Distribution and Magnitude of Completeness
4. Analysis and Results
The Frequency–Magnitude Distribution and the Fragment–Asperity Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mogi, K. Some Discussions on Aftershocks, Foreshocks and Earthquake Swarms: The Fracture of a Semi-Infinite Body Caused by an Inner Stress Origin and Its Relation to the Earthquake Phenomena, 3rd ed.; Bulletin of the Earthquake Research Institute, University of Tokyo: Tokyo, Japan, 1963; Volume 41, pp. 615–658. [Google Scholar]
- Špičák, A. Earthquake swarms and accompanying phenomena in intraplate regions: A Review. Stud. Geophys. Geod. 2000, 44, 89–106. [Google Scholar] [CrossRef]
- Vidale, J.E.; Shearer, P. A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J. Geophys. Res. Solid Earth 2006, 111, B05312. [Google Scholar] [CrossRef]
- Chen, X.; Shearer, P.M.; Abercrombie, R.E. Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion. J. Geophys. Res. Solid Earth 2012, 117, B04301. [Google Scholar] [CrossRef]
- Bhattacharya, S.N.; Dattatrayam, R.S. Some Characteristics of recent earthquake sequences. Gondwana Geol. Mag. 2003, 5, 67–85. [Google Scholar]
- Hainzl, S.; Kraft, T.; Wassermann, J.; Igel, H.; Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006, 33, L19303. [Google Scholar] [CrossRef]
- Michas, G.; Kapetanidis, V.; Spingos, I.; Kaviris, G.; Vallianatos, F. The 2020 Perachora peninsula earthquake sequence (Εast Corinth Rift, Greece): Spatiotemporal evolution and implications for the triggering mechanism. Acta Geophys. 2022, 70, 2581–2601. [Google Scholar] [CrossRef]
- Kundu, B.; Legrand, D.; Gahalaut, K.; Gahalaut, V.K.; Mahesh, P.; Raju, K.A.K.; Catherine, J.K.; Ambikapthy, A.; Chadha, R.K. The 2005 volcano-tectonic earthquake swarm in the Andaman Sea: Triggered by the 2004 great Sumatra-Andaman earthquake: SWARM IN THE ANDAMAN SEA. Tectonics 2012, 31, TC5009. [Google Scholar] [CrossRef]
- Sateesh, A.; Mahesh, P.; Singh, A.P.; Kumar, S.; Chopra, S.; Kumar, M.R. Are earthquake swarms in South Gujarat, northwestern Deccan Volcanic Province of India monsoon induced? Environ. Earth Sci. 2019, 78, 381. [Google Scholar] [CrossRef]
- Srijayanthi, G.; Chatterjee, R.; Kamra, C.; Chauhan, M.; Chopra, S.; Kumar, S.; Chauhan, P.; Limbachiya, H.; Ray, P.C. Seismological and InSAR based investigations to characterise earthquake swarms in Jamnagar, Gujarat, India—An active intraplate region. J. Asian Earth Sci. X 2022, 8, 100118. [Google Scholar] [CrossRef]
- Makropoulos, K.; Burton, P.W. Greek tectonics and seismicity. Tectonophysics 1984, 106, 275–304. [Google Scholar] [CrossRef]
- Tsapanos, T.M.; Burton, P.W. Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics 1991, 194, 153–169. [Google Scholar] [CrossRef]
- Kouskouna, V.; Makropoulos, K. Historical earthquake investigations in Greece. Ann. Geophys. 2009, 47, 31. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greece, 2003. [Google Scholar]
- Tselentis, G.-A.; Stavrakakis, G.; Makropoulos, K.; Latousakis, J.; Drakopoulos, J. Seismic moments of earthquakes at the western Hellenic arc and their application to the seismic hazard of the area. Tectonophysics 1988, 148, 73–82. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E.; Lazaridou, M. Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism. Tectonophysics 2006, 412, 279–288. [Google Scholar] [CrossRef]
- Pacchiani, F.; Lyon-Caen, H. Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophys. J. Int. 2010, 180, 59–72. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F. Modelling earthquake diffusion as a continuous-time random walk with fractional kinetics: The case of the 2001 Agios Ioannis earthquake swarm (Corinth Rift). Geophys. J. Int. 2018, 215, 333–345. [Google Scholar] [CrossRef]
- Duverger, C.; Godano, M.; Bernard, P.; Lyon-Caen, H.; Lambotte, S. The 2003–2004 seismic swarm in the western Corinth rift: Evidence for a multiscale pore pressure diffusion process along a permeable fault system. Geophys. Res. Lett. 2015, 42, 7374–7382. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; et al. The 2013 earthquake swarm in Helike, Greece: Seismic activity at the root of old normal faults. Geophys. J. Int. 2015, 202, 2044–2073. [Google Scholar] [CrossRef]
- Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Schaff, D.; Tsaklidis, G. Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). J. Seism. 2016, 20, 595–614. [Google Scholar] [CrossRef]
- De Barros, L.; Cappa, F.; Deschamps, A.; Dublanchet, P. Imbricated Aseismic Slip and Fluid Diffusion Drive a Seismic Swarm in the Corinth Gulf, Greece. Geophys. Res. Lett. 2020, 47, e2020GL087142. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G.; Tzanis, A. Evidence of non-extensivity in the seismicity observed during the 2011–2012 unrest at the Santorini volcanic complex, Greece. Nat. Hazards Earth Syst. Sci. 2013, 13, 177–185. [Google Scholar] [CrossRef]
- Saltogianni, V.; Stiros, S.C.; Newman, A.V.; Flanagan, K.; Moschas, F. Time-space modeling of the dynamics of Santorini volcano (Greece) during the 2011-2012 unrest. J. Geophys. Res. Solid Earth 2014, 119, 8517–8537. [Google Scholar] [CrossRef]
- Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Tsaklidis, G.; Tsapanos, T. Detailed microseismicity study in the area of Florina (Greece): Evidence for fluid driven seismicity. Tectonophysics 2017, 694, 424–435. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F. Scaling properties and anomalous diffusion of the Florina micro-seismic activity: Fluid driven? Géoméch. Energy Environ. 2020, 24, 100155. [Google Scholar] [CrossRef]
- Kostoglou, A.; Karakostas, V.; Bountzis, P.; Papadimitriou, E. Τhe February–March 2019 Seismic Swarm Offshore North Lefkada Island, Greece: Microseismicity Analysis and Geodynamic Implications. Appl. Sci. 2020, 10, 4491. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seism. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Sotolongo-Costa, O.; Posadas, A. Fragment-Asperity Interaction Model for Earthquakes. Phys. Rev. Lett. 2004, 92, 048501. [Google Scholar] [CrossRef] [PubMed]
- Motaghed, S.; Khazaee, M.; Eftekhari, N.; Mohammadi, M. A non-extensive approach to probabilistic seismic hazard analysis. Nat. Hazards Earth Syst. Sci. 2023, 23, 1117–1124. [Google Scholar] [CrossRef]
- Vega-Jorquera, P.; de la Barra, E.; da Silva, S.L.E. Antropogenic seismicity and the breakdown of the self-similarity described by nonextensive models. Phys. A Stat. Mech. Appl. 2023, 617, 128690. [Google Scholar] [CrossRef]
- Tsallis, C. Nonextensive Statistical Mechanics and Thermodynamics: Historical Backgroundand Present Status; Abe, S., Okamoto, Y., Eds.; Non Extensive Statistical Mechanics and Its Applications; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Vallianatos, F.; Benson, P.; Meredith, P.; Sammonds, P. Experimental evidence of a non-extensive statistical physics behaviour of fracture in triaxially deformed Etna basalt using acoustic emissions. EPL 2012, 97, 58002. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Scale-free statistics of time interval between successive earthquakes. Phys. A Stat. Mech. Appl. 2005, 350, 588–596. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Law for the distance between successive earthquakes. J. Geophys. Res. Solid Earth 2003, 108, 2113. [Google Scholar] [CrossRef]
- Sarlis, N.; Skordas, E.; Varotsos, P. Nonextensivity and natural time: The case of seismicity. Phys. Rev. E 2010, 82, 021110. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Aging and scaling of aftershocks. Phys. A 2004, 332, 533–538. [Google Scholar] [CrossRef]
- Vallianatos, F.; Karakostas, V.; Papadimitriou, E. A Non-Extensive Statistical Physics View in the Spatiotemporal Properties of the 2003 (Mw6.2) Lefkada, Ionian Island Greece, Aftershock Sequence. Pure Appl. Geophys. 2014, 171, 1343–1354. [Google Scholar] [CrossRef]
- Vallianatos, F.; Pavlou, K. Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence. Acta Geophys. 2021, 69, 1067–1084. [Google Scholar] [CrossRef]
- Rotondi, R.; Bressan, G.; Varini, E. Analysis of temporal variations of seismicity through non-extensive statistical physics. Geophys. J. Int. 2022, 230, 1318–1337. [Google Scholar] [CrossRef]
- Vallianatos, F.; Sammonds, P. Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran–Andaman and 2011 Honshu mega-earthquakes. Tectonophysics 2013, 590, 52–58. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E. Superstatistics. Phys. A Stat. Mech. Appl. 2003, 322, 267–275. [Google Scholar] [CrossRef]
- Beck, C. Recent developments in superstatistics. Braz. J. Phys. 2009, 39, 357–363. [Google Scholar] [CrossRef]
- Beck, C. Dynamical Foundations of Nonextensive Statistical Mechanics. Phys. Rev. Lett. 2001, 87, 180601. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G. A description of seismicity based on non-extensive statistical physics: A review. In Earthquakes and Their Impact on Society; D’Amico, S., Ed.; Springer Natural Hazards: Heidelberg, Germany, 2016; pp. 1–42. [Google Scholar]
- Livadiotis, G.; McComas, D.J. Physical Correlations Lead to Kappa Distributions. Astrophys. J. 2022, 940, 83. [Google Scholar] [CrossRef]
- Vallianatos, F.; Papadakis, G.; Michas, G. Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2016, 472, 20160497. [Google Scholar] [CrossRef]
- Picoli, S., Jr.; Mendes, R.S.; Malacarne, L.C.; Santos, R.P.B. q-distributions in complex systems: A brief review. Braz. J. Phys. 2009, 39, 468–474. [Google Scholar] [CrossRef]
- Sigalotti, L.D.G.; Ramírez-Rojas, A.; Vargas, C.A. Tsallis q-Statistics in Seismology. Entropy 2023, 25, 408. [Google Scholar] [CrossRef]
- Ferri, G.L.; Martínez, S.; Plastino, A. Equivalence of the four versions of Tsallis’s statistics. J. Stat. Mech. Theory Exp. 2005, 2005, P04009. [Google Scholar] [CrossRef]
- Wada, T.; Scarfone, A. Connections between Tsallis’ formalisms employing the standard linear average energy and ones employing the normalized q-average energy. Phys. Lett. A 2005, 335, 351–362. [Google Scholar] [CrossRef]
- Vallianatos, P.; Sammonds. A non-extensive statistics of the fault-population at the Valles Marineris extensional prov-ince. Mars. Tectonophys. 2011, 509, 50–54. [Google Scholar] [CrossRef]
- Frohlich, C.; Davis, S.D. Teleseismic b values; Or, much ado about 1.0. J. Geophys. Res. Atmos. 1993, 98, 631–644. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Tanaka, H. A plausible explanation of the b-value in the Gutenberg-Richter law from first Principles. Proc. Jpn. Acad. Ser. B 2004, 80, 429–434. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- McNutt, S.R. Seismic Monitoring and Eruption Forecasting of Volcanoes: A Review of the State-of-the-Art and Case Histories. In Moni-Toring and Mitigation of Volcano Hazards; Springer: Berlin/Heidelberg, Germany, 1996; pp. 99–146. [Google Scholar] [CrossRef]
- Chochlaki, K.; Michas, G.; Vallianatos, F. Complexity of the Yellowstone Park Volcanic Field Seismicity in Terms of Tsallis Entropy. Entropy 2018, 20, 721. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, C.G.; Michas, G.; Vallianatos, F.; Bountis, T. Evidence of q-exponential statistics in Greek seismicity. Phys. A Stat. Mech. Appl. 2014, 409, 71–77. [Google Scholar] [CrossRef]
- Michas, G.; Vallianatos, F.; Sammonds, P. Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlinear Process. Geophys. 2013, 20, 713–724. [Google Scholar] [CrossRef]
- Telesca, L. Tsallis-Based Nonextensive Analysis of the Southern California Seismicity. Entropy 2011, 13, 1267–1280. [Google Scholar] [CrossRef]
- Telesca, L. Maximum Likelihood Estimation of the Nonextensive Parameters of the Earthquake Cumulative Magnitude Distribution. Bull. Seism. Soc. Am. 2012, 102, 886–891. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. A Nonextensive Statistical Physics Analysis of the 1995 Kobe, Japan Earthquake. Pure Appl. Geophys. 2015, 172, 1923–1931. [Google Scholar] [CrossRef]
- Aki, K. Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ. 1965, 43, 237–239. [Google Scholar]
- Michas, G. Generalized Statistical Mechanics Description of Fault and Earthquake Populations in Corinth Rift (Greece). Ph.D. Thesis, University College London, London, UK, 2016. [Google Scholar]
- Doutsos, N.; Kontopoulos, D.; Frydas. Neotectonic evolution of northwestern continental Greece. Geol. Rudsch 1987, 76, 433–450. [Google Scholar] [CrossRef]
- Clews, J.E. Structural controls on basin evolution: Neogene to Quaternary of the Ionian zone, Western Greece. J. Geol. Soc. 1989, 146, 447–457. [Google Scholar] [CrossRef]
- Kiratzi, A.; Sokos, E.; Ganas, A.; Tselentis, A.; Benetatos, C.; Roumelioti, Z.; Serpetsidaki, A.; Andriopoulos, G.; Galanis, O.; Petrou, P. The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece. Tectonophysics 2008, 452, 51–65. [Google Scholar] [CrossRef]
- Evangelidis, C.P.; Konstantinou, K.I.; Melis, N.S.; Charalambakis, M.; Stavrakakis, G.N. Waveform Relocation and Focal Mechanism Analysis of an Earthquake Swarm in Trichonis Lake, Western Greece. Bull. Seism. Soc. Am. 2008, 98, 804–811. [Google Scholar] [CrossRef]
- Sokos, E.; Pikoulis, V.; Psarakis, E.; Lois, A. The april 2007 swarm in trichonis lake using data from a microseismic network. Bull. Geol. Soc. Greece 2017, 43, 2183. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Karakonstantis, A.; Kaviris, G.; Papadimitriou, P.; Voulgaris, N.; Makropoulos, K.; Popandopoulos, G.; Moshou, A. The April–June 2007 Trichonis Lake earthquake swarm (W. Greece): New implications toward the causative fault zone. J. Geodyn. 2014, 73, 60–80. [Google Scholar] [CrossRef]
- Peterek, A.; Schwarze, J. Architecture and Late Pliocene to recent evolution of outer-arc basins of the Hellenic subduction zone (south-central Crete, Greece). J. Geodyn. 2004, 38, 19–55. [Google Scholar] [CrossRef]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I. Copernicus Sentinel-1 MT-InSAR, GNSS and Seismic Monitoring of Deformation Patterns and Trends at the Methana Volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- Tibaldi, A.; Pasquarè, F.; Papanikolaou, D.; Nomikou, P. Tectonics of Nisyros Island, Greece, by field and offshore data, and analogue modelling. J. Struct. Geol. 2008, 30, 1489–1506. [Google Scholar] [CrossRef]
- Kaviris, G.; Kapetanidis, V.; Spingos, I.; Sakellariou, N.; Karakonstantis, A.; Kouskouna, V.; Elias, P.; Karavias, A.; Sakkas, V.; Gatsios, T.; et al. Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques. Appl. Sci. 2022, 12, 2630. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Jackson, J.A. Seismicity and strain in the gulf of corinth (greece) since 1694. J. Earthq. Eng. 1997, 1, 433–474. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Jackson, J.A. Seismicity and associated strain of central Greece between 1890 and 1988. Geophys. J. Int. 1990, 101, 663–708. [Google Scholar] [CrossRef]
- Ganas, A.; Oikonomou, I.A.; Tsimi, C. NOAfaults: A digital database for active faults in Greece. Bull. Geol. Soc. Greece 2017, 47, 518–530. [Google Scholar] [CrossRef]
- Wyss, M.; Wiemer, S.; Zuniga, R. Zmap: A Tool for Analyses of Seismicity Patterns, Typical Applications and Uses: A Cookbook. November 2001. Available online: https://www.researchgate.net/publication/261170802 (accessed on 2 July 2022).
- Wiemer, S. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seism. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. Non-extensive statistical physics applied to heat flow and the earthquake frequency–magnitude distribution in Greece. Phys. A Stat. Mech. Appl. 2016, 456, 135–144. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G.; Sammonds, P. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys. 2012, 60, 758–768. [Google Scholar] [CrossRef]
- Chochlaki, K.; Vallianatos, F.; Michas, G. Global regionalized seismicity in view of Non-Extensive Statistical Physics. Phys. A Stat. Mech. Appl. 2018, 493, 276–285. [Google Scholar] [CrossRef]
- Telesca, L. Non-extensivity in seismicity. The case of L’Aquila area (central Italy), struck by the April 6th 2009 earthquake (ML5.8). EGU Gen. Assem. Conf. Abstr. 2010, 12, 1913. [Google Scholar]
- Chelidze, T.; Matcharashvili, T. Complexity of seismic process; measuring and applications—A review. Tectonophysics 2007, 431, 49–60. [Google Scholar] [CrossRef]
- Matcharashvili, T.; Chelidze, T.; Javakhishvili, Z.; Jorjiashvili, N.; Paleo, U.F. Non-extensive statistical analysis of seismicity in the area of Javakheti, Georgia. Comput. Geosci. 2011, 37, 1627–1632. [Google Scholar] [CrossRef]
- Darooneh, A.H.; Dadashinia, C. Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint. Phys. A Stat. Mech. Appl. 2008, 387, 3647–3654. [Google Scholar] [CrossRef]
- Hasumi, T. Interoccurrence time statistics in the two-dimensional Burridge-Knopoff earthquake model. Phys. Rev. E 2007, 76, 026117. [Google Scholar] [CrossRef]
- Hasumi, T. Hypocenter interval statistics between successive earthquakes in the two-dimensional Burridge–Knopoff model. Phys. A Stat. Mech. Appl. 2009, 388, 477–482. [Google Scholar] [CrossRef]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. Evidence of Nonextensive Statistical Physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics 2013, 608, 1037–1048. [Google Scholar] [CrossRef]
- Ogata, Y. Space-Time Point-Process Models for Earthquake Occurrences. Ann. Inst. Stat. Math. 1998, 50, 379–402. [Google Scholar] [CrossRef]
- Anyfadi, E.-A.; Avgerinou, S.-E.; Michas, G.; Vallianatos, F. Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences. Entropy 2022, 24, 1850. [Google Scholar] [CrossRef]
- Avgerinou, S.-E.; Anyfadi, E.-A.; Michas, G.; Vallianatos, F. A Non-Extensive Statistical Physics View of the Temporal Properties of the Recent Aftershock Sequences of Strong Earthquakes in Greece. Appl. Sci. 2023, 13, 1995. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G. Complexity of Fracturing in Terms of Non-Extensive Statistical Physics: From Earthquake Faults to Arctic Sea Ice Fracturing. Entropy 2020, 22, 1194. [Google Scholar] [CrossRef]
- Vallianatos, F. A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys. A Stat. Mech. Appl. 2011, 390, 1773–1778. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Papadakis, G. Nonextensive Statistical Seismology. In Complexity of Seismic Time Series; Elsevier: Amsterdam, The Netherlands, 2018; pp. 25–59. [Google Scholar] [CrossRef]
- Chatzopoulos, G. Geodynamic and Seismological Investigation of the South Hellenic Arc Structure; Brunel University London: London, UK, 2019. [Google Scholar] [CrossRef]
Swarms | N | Mc | Nc | b | a |
---|---|---|---|---|---|
Trichonis Lake | 1309 | 2.2 | 745 | 1.13 0.04 | 5.36 |
Western Crete | 653 | 2.0 | 420 | 0.99 0.05 | 4.61 |
Nisyros | 1567 | 2.7 | 887 | 0.99 0.05 | 5.69 |
Thiva | 4695 | 1.6 | 2275 | 1.10 0.03 | 5.15 |
Pagasetic Gulf | 283 | 1.5 | 177 | 1.19 0.1 | 4.07 |
Swarms | qT | Tq (s) | Tq1–Tq2 | qD | Dq (km) | Dq1–Dq2 | Τc (s) |
---|---|---|---|---|---|---|---|
Trichonis Lake | 1.44 | 1805 | 1781–1829 | 0.75 | 7.5 | 7.43–7.57 | 6.8 × 104 |
Western Crete | 1.53 | 633 | 629–638 | 0.46 | 8.62 | 8.40–8.83 | 4.3 × 104 |
Nisyros | 1.58 | 1625 | 1610–1640 | 0.48 | 16.67 | 16.45–16.88 | 1.7 × 105 |
Thiva | 1.47 | 1736 | 1731–1742 | 0.67 | 5.47 | 5.40–5.52 | 2.9 × 105 |
Pagasetic Gulf | 1.57 | 829 | 821–837 | 0.46 | 8.46 | 8.15–8.70 | 1.1 × 105 |
Swarms | qM | qM1–qM2 |
---|---|---|
Trichonis Lake | 1.49 | 1.47–1.51 |
Western Crete | 1.48 | 1.46–1.50 |
Nisyros | 1.48 | 1.47–1.49 |
Thiva | 1.45 | 1.44–1.46 |
Pagasetic Gulf | 1.48 | 1.44–1.52 |
Swarms | qT + qD | n |
---|---|---|
Trichonis Lake | 2.19 | 3 |
Western Crete | 1.99 | 2 |
Nisyros | 2.06 | 1 |
Thiva | 2.14 | 2 |
Pagasetic Gulf | 2.03 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardeli, E.; Michas, G.; Pavlou, K.; Vallianatos, F.; Karakonstantis, A.; Chatzopoulos, G. Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics. Entropy 2023, 25, 667. https://doi.org/10.3390/e25040667
Sardeli E, Michas G, Pavlou K, Vallianatos F, Karakonstantis A, Chatzopoulos G. Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics. Entropy. 2023; 25(4):667. https://doi.org/10.3390/e25040667
Chicago/Turabian StyleSardeli, Eirini, Georgios Michas, Kyriaki Pavlou, Filippos Vallianatos, Andreas Karakonstantis, and Georgios Chatzopoulos. 2023. "Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics" Entropy 25, no. 4: 667. https://doi.org/10.3390/e25040667
APA StyleSardeli, E., Michas, G., Pavlou, K., Vallianatos, F., Karakonstantis, A., & Chatzopoulos, G. (2023). Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics. Entropy, 25(4), 667. https://doi.org/10.3390/e25040667