Air Combat Intention Recognition with Incomplete Information Based on Decision Tree and GRU Network
Abstract
:1. Introduction
- (1)
- GRU network and HFM are used to predict the numerical and non-numerical state data of the enemy fighter, and the missing numerical and non-numerical state data are repaired using cubic spline interpolation and mean completer method, respectively.
- (2)
- An intention decision tree of enemy fighter is constructed to extract intention classification rules from incomplete and uncertain historical data, where the uncertain data are represented by interval numbers. The index of decision support degree is introduced to judge the node splitting sequence of the decision tree, and the information entropy of partitioning (IEP) is applied to the node splitting criterion. Subsequently, the enemy fighter intention is recognized based on the intention decision tree and the predicted enemy fighter state.
- (3)
- The expert experience is integrated into intention recognition, and a target maneuver tendency function is proposed to filter out the deceptive attack intention.
2. Literature Review
3. Air Combat Intention Recognition Problem
4. Data Repair
4.1. Cubic Spline Interpolation
- (a)
- ,
- (b)
- is a cubic equation for each subinterval ,
- (c)
- , the first derivative of , and the second derivative of are continuous on the interval .
4.2. Mean Completer
5. State Prediction Based on GRU Network
- (1)
- Use battlefield satellites, radars, sensors, and other information acquisition equipment to collect time-varying state data of enemy fighter;
- (2)
- Repair the missing data in the collected original data;
- (3)
- Encode the repaired state data with feature vectors;
- (4)
- Input the encoded data into the GRU network for training and obtain the state prediction model;
- (5)
- Use the prediction model to predict the state of the enemy fighter at the next moment.
6. Intention Recognition Based on Decision Tree
6.1. Processing of Incomplete Information
6.2. Decision Support Degree Based on Conditional Attribute
- Property 1: .
- Property 2: When , .
- Property 3: When and , .
6.3. Optimal Split Point of Attribute Interval
6.4. Target Maneuver Tendency Function
6.5. Intention Recognition Procedure Based on Decision Tree
- (1)
- Determine the interval divisions of conditional attributes by using the a priori knowledge of air combat.
- (2)
- Calculate the decision support degree of all conditional attributes, then select the conditional attribute with the highest decision-support degree as the split point.
- (3)
- Count all the split points of the conditional attribute, calculate IEP of each split point, and then select the point with the minimum IEP as the optimal split point.
- (4)
- Divide the decision information into two parts through the split point, and then divide the other attributes one by one through the above steps until all attributes are divided.
- (5)
- Construct decision tree.
- (6)
- Based on the predicted state data, the established decision tree is used to judge the enemy fighter intention.
- (7)
- If the intention is to attack, the target maneuver tendency function is used to verify the accuracy of the judgment.
7. Simulation Study
7.1. State Prediction
7.2. Intention Recognition
- sF = {4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17},
- sM = {1, 2, 3, 4, 7, 8, 11, 14, 21, 23, 24},
- sS = {4, 14, 18, 19, 20, 22},
- dL= {2, 6, 7, 8, 10, 11, 12, 18, 24},
- dM = {2, 5, 9, 11, 19, 20, 21, 22, 23, 24},
- dS = {1, 2, 3, 4, 11, 13, 14, 15, 16, 17, 24},
- AdL = {1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 20, 23, 24},
- AdM = {3, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 21, 22},
- AdH = {3, 6, 9, 20},
- HaS = {1, 2, 3, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 24},
- HaM = {7, 8, 10, 11, 12, 15, 18, 19, 20, 21},
- HaL = {7, 8, 9, 10, 11, 13, 14, 19},
- AzE = {1, 2, 3, 6, 12, 16, 19, 23, 24},
- AzW = {2,4,5,6,9,11,12,16,17,21,24},
- AzS = {2, 6, 7, 10, 12, 14, 15, 16, 20, 22, 24},
- AzN = {2, 6, 8, 12, 13, 16, 18, 24},
- aP = {1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 17, 23},
- aC = {2, 3, 7, 10, 12, 14, 16, 18, 20, 22, 23, 24},
- aN = {2, 8, 14, 19, 21, 23},
- DSD(s, I) = 0.6310,
- DSD(d, I) = 0.6389,
- DSD(Ad, I) = 0.5686,
- DSD(Ha, I) = 0.5961,
- DSD(Az, I) = 0.6182,
- DSD(a, I) = 0.5846,
- DSD(Aar, I) = 0.3521,
- DSD(Asr, I) = 0.3503,
- DSD(Ei, I) = 0.4470,
- DSD(Eid, I) = 0.4719.
7.3. Intention Verification
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisht, S.; Malhotra, A.; Taneja, S.B. Modelling and Simulation of Tactical Team Behaviour. Def. Sci. J. 2007, 57, 853–864. [Google Scholar] [CrossRef]
- Kott, A.; Swami, A.; West, B.J. The Internet of Battle Things. Computer 2016, 49, 70–75. [Google Scholar] [CrossRef]
- Bisht, S.; Bharati, H.S.; Taneja, S.B.; Bedi, P. Command Agent Belief Architecture to Support Commander Decision Making in Military Simulation. Def. Sci. J. 2018, 68, 46–53. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Geng, J.; Jiang, W.; Deng, X.; Miao, W. An information fusion method based on deep learning and fuzzy discount-weighting for target intention recognition. Eng. Appl. Artif. Intell. 2022, 109, 104610. [Google Scholar] [CrossRef]
- Xu, X.; Yang, R.; Fu, Y. Situation Assessment for Air Combat Based on Novel Semi-Supervised Naive Bayes. J. Syst. Eng. Electron. 2018, 29, 768–779. [Google Scholar]
- Zhou, Y.; Tang, Y.; Zhao, X. A Novel Uncertainty Management Approach for Air Combat Situation Assessment Based on Improved Belief Entropy. Entropy 2019, 21, 495. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Z.-X.; Piao, H.-Y.; Huang, J.-C.; Zhou, D.-Y.; Ren, Z. Online hierarchical recognition method for target tactical intention in beyond-visual-range air combat. Def. Technol. 2022, 18, 1349–1361. [Google Scholar] [CrossRef]
- Piao, H.; Han, Y.; Chen, H.; Peng, X.; Fan, S.; Sun, Y.; Liang, C.; Liu, Z.; Sun, Z.; Zhou, D. Complex relationship graph abstraction for autonomous air combat collaboration: A learning and expert knowledge hybrid approach. Expert Syst. Appl. 2022, 215, 119285. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, M.; Wang, Y.; He, J.; Yang, C. Information Entropy-Based Intention Prediction of Aerial Targets under Uncertain and Incomplete Information. Entropy 2020, 22, 279. [Google Scholar] [CrossRef]
- Zhou, K.; Wei, R.; Xu, Z.; Zhang, Q.; Lu, H.; Zhang, G. An Air Combat Decision Learning System Based on a Brain-like Cognitive Mechanism. Cogn. Comput. 2020, 12, 128–139. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Mohammed, M.F. SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network. J. Comput. Sci. 2018, 25, 467–473. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- Manikandan, R.; Patan, R.; Gandomi, A.H.; Sivanesan, P.; Kalyanaraman, H. Hash polynomial two factor decision tree using IoT for smart health care scheduling. Expert Syst. Appl. 2020, 141, 112924. [Google Scholar] [CrossRef]
- Rabcan, J.; Levashenko, V.; Zaitseva, E.; Kvassay, M.; Subbotin, S. Application of Fuzzy Decision Tree for Signal Classification. IEEE Trans. Ind. Inform. 2019, 15, 5425–5434. [Google Scholar] [CrossRef]
- Duminil-Copin, H.; Raoufi, A.; Tassion, V. Sharp phase transition for the random-cluster and Potts models via decision trees. Ann. Math. 2019, 189, 75–99. [Google Scholar] [CrossRef]
- Azad, M.; Moshkov, M. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions. Eur. J. Oper. Res. 2017, 263, 910–921. [Google Scholar] [CrossRef]
- Rizvi, S.; Rienties, B.; Khoja, S.A. The role of demographics in online learning; A decision tree based approach. Comput. Educ. 2019, 137, 32–47. [Google Scholar] [CrossRef]
- Dev, V.A.; Eden, M.R. Formation lithology classification using scalable gradient boosted decision trees. Comput. Chem. Eng. 2019, 128, 392–404. [Google Scholar] [CrossRef]
- Ghiasi, M.M.; Zendehboudi, S.; Mohsenipour, A.A. Decision tree-based diagnosis of coronary artery disease: CART model. Comput. Methods Programs Biomed. 2020, 192, 105400. [Google Scholar] [CrossRef] [PubMed]
- Rohitha, K.K.; Hewawasam, G.K.; Premaratne, K.; Shyu, M.L. Rule Mining and Classification in a Situation Assessment Application: A Belief-Theoretic Approach for Handling Data Imperfections. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007, 37, 1446–1459. [Google Scholar]
- Chen, L.; Liang, X.; Feng, Y.; Zhang, L.; Yang, J.; Liu, Z. Online Intention Recognition with Incomplete Information Based on a Weighted Contrastive Predictive Coding Model in Wargame. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Xi, Z.-F.; Xu, A.; Kou, Y.-X.; Li, Z.-W.; Yang, A.-W. Air Combat Maneuver Trajectory Prediction Model of Target Based on Chaotic Theory and IGA-VNN. Math. Probl. Eng. 2020, 2020, 8325498. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, B.; Bi, W.; Mao, Z. Attention based trajectory prediction method under the air combat environment. Appl. Intell. 2022, 52, 17341–17355. [Google Scholar] [CrossRef]
- Xi, Z.; Xu, A.; Kou, Y.; Li, Z.; Yang, A. Target Maneuver Trajectory Prediction Based on RBF Neural Network Optimized by Hybrid Algorithm. J. Syst. Eng. Electron. 2021, 32, 498–516. [Google Scholar]
- Teng, F.; Song, Y.; Wang, G.; Zhang, P.; Wang, L.; Zhang, Z. A GRU-Based Method for Predicting Intention of Aerial Targets. Comput. Intell. Neurosci. 2021, 2021, 6082242. [Google Scholar] [CrossRef]
- Teng, F.; Guo, X.; Song, Y.; Wang, G. An Air Target Tactical Intention Recognition Model Based on Bidirectional GRU with Attention Mechanism. IEEE Access 2021, 9, 169122–169134. [Google Scholar] [CrossRef]
- Teng, F.; Song, Y.; Guo, X. Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model. Mathematics 2021, 9, 2412. [Google Scholar] [CrossRef]
- Wang, S.; Wang, G.; Fu, Q.; Song, Y.; Liu, J.; He, S. STABC-IR: An air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism. Chin. J. Aeronaut. 2023, 36, 316–334. [Google Scholar] [CrossRef]
- Yin, Y.; Gong, G.; Han, L. Experimental study on fighters behaviors mining. Expert Syst. Appl. 2011, 38, 5737–5747. [Google Scholar] [CrossRef]
- Wang, X.; Lu, A.-G.; Liu, J.; Kang, Z.-W.; Pan, C. Intelligent interaction model for battleship control based on the fusion of target intention and operator emotion. Comput. Electr. Eng. 2021, 92, 107196. [Google Scholar] [CrossRef]
- Xie, L.; Wei, Z.; Ding, D.; Zhang, Z.; Tang, A. Long and Short Term Maneuver Trajectory Prediction of UCAV Based on Deep Learning. IEEE Access 2021, 9, 32321–32340. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, J.; Ai, J. Visual Perception-Based Target Aircraft Movement Prediction for Autonomous Air Combat. J. Aircr. 2015, 52, 538–552. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, X.; Barsky, B. Quadratic B-spline Curve Interpolation. Comput. Math. Appl. 2001, 41, 39–50. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, B.; Li, K. On Fourier Interpolation Error for Band-Limited Signals. IEEE Trans. Signal Process. 2009, 57, 2412–2416. [Google Scholar] [CrossRef]
- Bogdanov, V.V.; Volkov, Y.S. Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines. Numer. Algorithms 2021, 86, 833–861. [Google Scholar] [CrossRef]
- Volkov, Y.S.; Bogdanov, V.V.; Miroshnichenko, V.L.; Shevaldin, V.T. Shape-preserving interpolation by cubic splines. Math. Notes 2010, 88, 798–805. [Google Scholar] [CrossRef]
- Priyaa, B.M. Machine Learning Based on Fuzzy Decision Trees for Autonomous Armed Aerial Vehicle Control in Realistic Air Combat Scenarios. J. Algebraic Stat. 2022, 13, 3661–3666. [Google Scholar]
- Gelly, S.; Silver, D. Monte-Carlo tree search and rapid action value estimation in computer Go. Artif. Intell. 2011, 175, 1856–1875. [Google Scholar] [CrossRef]
- Leung, Y.; Li, D. Maximal Consistent Block Technique for Rule Acquisition in Incomplete Information Systems. Inf. Sci. 2003, 153, 85–106. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Wang, X.; Zhai, J. A hybrid monotone decision tree model for interval-valued attributes. Adv. Comput. Intell. 2022, 2, 12. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Wei, J.; Liu, L.; Huang, X.; Gao, S.; Liu, W.; Li, J.; Yu, C.; Li, Z. Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects. Opt. Express 2019, 27, 32210–32216. [Google Scholar] [CrossRef] [PubMed]
Moment | Speed (m/s) | Distance (km) | Altitude Difference (km) | Heading Angle (°) | Azimuth (mil) | Acceleration (m/s2) |
---|---|---|---|---|---|---|
1 | 420 | 395 | 14.6 | 35 | 755 | 4 |
2 | 415 | 392 | 14.3 | 34 | 750 | 2 |
3 | 412 | 386 | 14.4 | 30 | * | 1 |
4 | 415 | 382 | 14.6 | * | 765 | −5 |
5 | * | 375 | * | 30 | 760 | 2 |
6 | 400 | 371 | 13.8 | 28 | 765 | 2 |
7 | 398 | 366 | 14 | 25 | 770 | * |
8 | 395 | * | 13.5 | 20 | 780 | 4 |
9 | 400 | 348 | 13.2 | * | * | 1 |
10 | 387 | 340 | 13 | 18 | 785 | 0 |
11 | 382 | 328 | 12.5 | 14.0 | 805 | 2 |
12 | 376 | 314 | 12.2 | 14.0 | 920 | 2 |
13 | 365 | 310 | 11 | 13.5 | 1020 | -5 |
14 | 370 | 306 | 10.3 | 12.0 | 1005 | 3 |
15 | 345 | 301 | 10.5 | 13.0 | 1230 | * |
16 | 343 | 291 | 10.1 | * | * | 2 |
17 | 338 | 284 | 9.6 | 8.0 | 1400 | 3 |
18 | 336 | 267 | * | 10.0 | 1390 | 8 |
19 | 335 | 245 | 8.3 | 8.0 | 1380 | 5 |
20 | * | 230 | 7.6 | 7.0 | 1450 | * |
21 | 320 | * | 7.2 | * | 1560 | 5 |
22 | 321 | 195 | 6.3 | 9.0 | 1600 | 8 |
23 | 318 | 178 | 5.9 | 6.0 | 1750 | 10 |
24 | 314 | 169 | 5.2 | 5.0 | 1800 | * |
25 | 309 | 158 | 4.9 | 5.0 | 1850 | -8 |
26 | 302 | 145 | 4.7 | 4.0 | 1930 | 10 |
27 | 289 | 132 | 4.2 | 1.0 | * | -5 |
28 | 286 | 123 | 3.4 | 3.0 | 2050 | 9 |
29 | 280 | 115 | 2.6 | 1.0 | 2080 | 8 |
30 | 279 | 101 | 2.2 | 2.0 | 2110 | 8 |
Moment | Air-to-Air Radar State | Air-to-Surface Radar State | Electromagnetic Interference State | Interfered State |
---|---|---|---|---|
1 | 1 | 1 | 0 | 0 |
2 | 1 | 1 | 0 | 0 |
3 | 0 | 1 | 0 | 0 |
4 | 1 | * | 1 | 1 |
5 | 0 | 0 | 1 | 1 |
6 | * | 1 | 1 | 1 |
7 | 1 | 1 | * | 0 |
8 | 1 | 1 | 1 | 1 |
9 | 1 | * | * | 1 |
10 | * | 0 | 1 | 1 |
11 | 1 | 1 | * | * |
12 | 1 | 1 | 0 | 0 |
13 | 1 | 1 | * | 0 |
14 | 1 | 0 | 0 | 0 |
15 | * | 1 | 1 | 0 |
16 | 1 | 1 | 1 | 0 |
17 | 1 | 1 | 1 | * |
18 | 1 | 0 | 0 | 1 |
19 | 0 | 1 | 1 | 0 |
20 | 1 | 1 | 1 | 1 |
21 | 1 | 1 | 1 | 1 |
22 | 0 | 1 | 0 | * |
23 | 1 | 1 | 1 | 1 |
24 | 1 | 0 | 1 | 1 |
25 | * | 1 | * | 1 |
26 | 1 | 0 | 1 | 0 |
27 | 1 | * | 1 | * |
28 | * | 1 | 1 | 1 |
29 | 1 | 1 | 1 | 0 |
30 | 1 | 1 | 1 | 1 |
Moment | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|
Actual speed | 309 | 302 | 289 | 286 | 280 | 275 |
Predicted speed | 306.21 | 302.06 | 296.54 | 288.01 | 279.70 | 271.77 |
Relative error | −1.01% | +0.02% | +2.61% | +0.69% | −0.11% | −1.41% |
Computing Time (s) | ||||||
---|---|---|---|---|---|---|
Model | Speed (m/s) | Distance (km) | Altitude Difference (km) | Heading Angle (°) | Azimuth (mil) | Acceleration (m/s2) |
GRU | 5.2 | 5.5 | 5.4 | 4.9 | 5.1 | 5.3 |
LSTM | 7.1 | 8.1 | 6.7 | 6.8 | 7.5 | 7.8 |
RNN | 7.8 | 7.9 | 6.7 | 7.2 | 7.3 | 7.3 |
Root Mean Square Error | ||||||
Model | Speed (m/s) | Distance (km) | Altitude Difference (km) | Heading Angle (°) | Azimuth (mil) | Acceleration (m/s2) |
GRU | 2.204 | 1.883 | 0.574 | 0.789 | 50.37 | 4.60 |
LSTM | 3.068 | 2.898 | 0.571 | 0.879 | 62.53 | 4.72 |
RNN | 7.868 | 5.367 | 0.927 | 1.2 | 103.25 | 6.65 |
Moment | Speed (m/s) | Distance (km) | Altitude Difference (km) | Heading Angle (°) | Azimuth (mil) | Acceleration (m/s2) |
---|---|---|---|---|---|---|
31 | 266.87 | 92.31 | 2.06 | 1.43 | 2216.15 | 5.83 |
Moment | Air-to-Air Radar State | Air-to-Surface Radar State | Electromagnetic Interference State | Interfered State |
---|---|---|---|---|
31 | 1 | 1 | 1 | 1 |
No. | Speed (s) | Distance (d) | Altitude Difference (Ad) | Heading Angle (Ha) | Azimuth (Az) | Acceleration (a) | Intention (I) |
---|---|---|---|---|---|---|---|
1 | [200, 260] | [50, 80] | [5, 6] | [20, 30] | [800, 1000] | [5, 10] | Att |
2 | [220, 270] | * | [2, 3] | [25, 40] | * | * | Att |
3 | [290, 320] | [70, 90] | * | [35, 45] | [2000, 2200] | [−5, 0] | Att |
4 | * | [40, 60] | [2.5, 3.5] | [330, 350] | [4000, 4100] | [7, 14] | Att |
5 | [340, 360] | [100, 110] | [3, 5] | [320, 330] | [4500, 4700] | [5, 8] | Att |
6 | [360, 380] | [300, 330] | [12, 13] | [100, 120] | * | [6, 10] | Def |
7 | [270, 300] | [270, 290] | [10, 11] | * | [2350, 2500] | [0, 3] | Def |
8 | [300, 320] | [270, 280] | [9, 10] | * | [5500, 5700] | [−10, −5] | Def |
9 | [360, 380] | [200, 220] | * | [210, 230] | [3900, 4150] | [5, 7] | Def |
10 | [355, 375] | [300, 330] | [7, 8] | * | [2300, 2500] | [−2, 2] | Sur |
11 | [280, 310] | * | [9, 10] | * | [3800, 4000] | [5, 8] | Sur |
12 | [370, 400] | [310, 350] | [10, 11] | [280, 300] | * | [0, 2] | Sur |
13 | [430, 450] | [80, 90] | [4, 5] | [100, 120] | [5300, 5400] | [12, 16] | Pen |
14 | * | [60, 70] | [2, 3] | [170, 190] | [2400, 2550] | * | Pen |
15 | [390, 410] | [50, 60] | [3, 4] | [280, 290] | [2350, 2500] | [15, 20] | Pen |
16 | [360, 370] | [90, 100] | [6, 7] | [30, 40] | * | [0, 2] | Fei |
17 | [350, 370] | [80, 90] | [7, 8] | [330, 350] | [4150, 4300] | [5, 9] | Fei |
18 | [150, 170] | [255, 270] | [6, 8] | [70, 80] | [5300, 5400] | [−1, 1] | Rec |
19 | [120, 140] | [200, 210] | [9, 10] | * | [1000, 1200] | [−8, −5] | Rec |
20 | [180, 190] | [150, 180] | * | [80, 90] | [2300, 2500] | [0, 2] | Rec |
21 | [220, 230] | [210, 220] | [7, 9] | [270, 290] | [4100, 4300] | [−10, −5] | Rec |
22 | [120, 140] | [180, 200] | [6, 7] | [20, 25] | [2300, 2400] | [0, 1] | Ele |
23 | [210, 230] | [120, 130] | [4, 5] | [30, 40] | [1050, 1200] | * | Ele |
24 | [230, 240] | * | [3, 4] | [320, 330] | * | [0, 2] | Ele |
No. | Air-to-Air Radar State (Aar) | Air-to-Surface Radar State (Asr) | Electromagnetic Interference State (Ei) | Interfered State (Eid) | Intention (I) |
---|---|---|---|---|---|
1 | 1 | 0 | 1 | 0 | Att |
2 | 1 | 1 | 1 | 0 | Att |
3 | 1 | * | 1 | 1 | Att |
4 | 1 | 0 | * | 1 | Att |
5 | * | 1 | * | 0 | Att |
6 | 0 | 1 | 0 | 0 | Def |
7 | 0 | 1 | 1 | * | Def |
8 | 0 | 0 | 0 | 0 | Def |
9 | 0 | 1 | 1 | 0 | Def |
10 | 1 | 1 | 1 | 1 | Sur |
11 | 1 | 1 | 1 | 0 | Sur |
12 | 1 | 1 | 0 | * | Sur |
13 | 1 | 1 | 1 | 1 | Pen |
14 | 1 | 0 | 1 | 1 | Pen |
15 | * | 1 | * | 1 | Pen |
16 | 1 | 0 | 1 | 0 | Fei |
17 | 1 | 1 | 1 | 1 | Fei |
18 | 1 | 0 | 0 | 0 | Rec |
19 | 1 | 1 | 0 | 0 | Rec |
20 | 1 | 1 | 0 | 1 | Rec |
21 | 1 | 1 | 0 | 0 | Rec |
22 | 1 | 1 | 1 | 0 | Ele |
23 | 1 | 1 | 1 | 0 | Ele |
24 | 1 | 1 | 1 | 1 | Ele |
No. | Speed (s) | Distance (d) | Altitude Difference (Ad) | Heading Angle (Ha) | Azimuth (Az) | Acceleration (a) | Intention (I) |
---|---|---|---|---|---|---|---|
1 | Medium | Short | Low | Small | East | Positive | Att |
2 | Medium | * | Low | Small | * | * | Att |
3 | Medium | Short | * | Small | East | Constant | Att |
4 | * | Short | Low | Small | West | Positive | Att |
5 | Fast | Medium | Low | Small | West | Positive | Att |
6 | Fast | Long | High | Large | * | Positive | Def |
7 | Medium | Long | Medium | * | South | Constant | Def |
8 | Medium | Long | Medium | * | North | Negative | Def |
9 | Fast | Medium | * | Large | West | Positive | Def |
10 | Fast | Long | Medium | * | South | Constant | Sur |
11 | Medium | * | Medium | * | West | Positive | Sur |
12 | Fast | Long | Medium | Medium | * | Constant | Sur |
13 | Fast | Short | Low | Large | North | Positive | Pen |
14 | * | Short | Low | Large | South | * | Pen |
15 | Fast | Short | Low | Medium | South | Positive | Pen |
16 | Fast | Short | Medium | Small | * | Constant | Fei |
17 | Fast | Short | Low | Small | West | Positive | Fei |
18 | Slow | Long | Medium | Medium | North | Constant | Rec |
19 | Slow | Medium | Medium | * | East | Negative | Rec |
20 | Slow | Medium | * | Medium | South | Constant | Rec |
21 | Medium | Medium | Medium | Medium | West | Negative | Rec |
22 | Slow | Medium | Medium | Small | South | Constant | Ele |
23 | Medium | Medium | Low | Small | East | * | Ele |
24 | Medium | * | Low | Small | * | Constant | Ele |
Split point | 45 | 55 | 65 | 75 | 85 | 95 | 105 | 115 | 125 |
IEP | 3.007 | 3.378 | 3.188 | 3.089 | 2.837 | 2.491 | 2.548 | 2.406 | 2.535 |
Split point | 140 | 165 | 190 | 205 | 215 | 237.5 | 262.5 | 275 | 285 |
IEP | 2.429 | 2.645 | 2.669 | 2.912 | 2.937 | 2.758 | 2.859 | 2.952 | 2.886 |
Split point | 295 | 305 | 320 | 340 | |||||
IEP | 2.797 | 2.906 | 3.205 | 3.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Chen, M.; Fang, W. Air Combat Intention Recognition with Incomplete Information Based on Decision Tree and GRU Network. Entropy 2023, 25, 671. https://doi.org/10.3390/e25040671
Xia J, Chen M, Fang W. Air Combat Intention Recognition with Incomplete Information Based on Decision Tree and GRU Network. Entropy. 2023; 25(4):671. https://doi.org/10.3390/e25040671
Chicago/Turabian StyleXia, Jingyang, Mengqi Chen, and Weiguo Fang. 2023. "Air Combat Intention Recognition with Incomplete Information Based on Decision Tree and GRU Network" Entropy 25, no. 4: 671. https://doi.org/10.3390/e25040671
APA StyleXia, J., Chen, M., & Fang, W. (2023). Air Combat Intention Recognition with Incomplete Information Based on Decision Tree and GRU Network. Entropy, 25(4), 671. https://doi.org/10.3390/e25040671