MRNG: Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator
Abstract
:1. Introduction
- We show that random numbers can be extracted from a yet unused entropy source for randomness, namely, UHECR.
- We describe four methods that, in combination, extract randomness out of UHECR, as discussed in Section 4.2.2.
- Our proposed Muon Random Number Generator (MRNG) prototype (named in honor of the research on muons collected among UHECR) does not need any external services or devices in order to extract randomness from UHECR. Our MRNG prototype works on any Android smartphone with an API level of 14 or higher, including Android 4.0, which was released in 2011. This is stated in more detail in Section 4.2.
- Most importantly, we have proved that our extracted random sequence, out of the UHECR entropy source, is truly random when tested against NIST SP.800-22 statistical test suite. This is stated within Section 6.
- Furthermore, we may have accidentally discovered a new splash-like representation of (presumably) UHECR, as discussed and shown in Section 7.1.
2. Threat Model
3. Background
3.1. Random Number Generators
3.2. Relevant Existing Random Number Generators
3.2.1. RNG Proposed by Park
3.2.2. RNG Proposed by Zhang
3.2.3. RNG Proposed by Leschiutta
3.2.4. RNG Proposed by Chen
3.2.5. RNG Proposed by Krhovják
3.2.6. RNG Proposed by Reezwana
3.3. Random Number Test Suites
| 100 |
| 100 |
| 100 |
| 128 |
| 100 |
| 100 |
3.4. Cosmic Radiation
3.4.1. Single Event Effect
SEU Incidents
3.4.2. Smartphone-Based Cosmic Ray Detectors
4. Experiment
4.1. Experiment Setup
4.2. Experiment Implementation
4.2.1. Application
4.2.2. Algorithm
- P1 Time.
- P2 Position.
- P3 Color.
- P4 Outlier.
4.3. Experiment Execution
5. Evaluation
Timestamp | P124L | P#L | P1–P4 |
---|---|---|---|
1647655594901 | 52 | 17 2 34 33 | P1: 10111001010110101 P2: 11 P3: 1101001010000101011001011010010001 P4: 110100101000010101100101101000001 |
1647670326687 | 46 | 15 2 29 29 | P1: 110100000111111 P2: 11 P3: 11000011100101111010001111110 P4: 11000011100101111010001111110 |
1647889001366 | 49 | 11 2 44 36 | P1: 10101010110 P2: 00 P3: 11100001101000111000101100001111100101100011 P4: 100011010011001011000011111001011001 |
1647992216262 | 37 | 14 2 27 21 | P1: 11111110000110 P2: 00 P3: 111110011110101110110110111 P4: 110011110101110111011 |
1648193196369 | 34 | 17 2 17 15 | P1: 10111100001110001 P2: 10 P3: 00100110111000010 P4: 001001011000010 |
1648302783786 | 28 | 17 2 11 9 | P1: 10100011101001010 P2: 01 P3: 11111111110 P4: 111111110 |
Detection
6. Results
7. Discussion
7.1. Splash-like Particle Representation
7.2. Muon Random Number Generator (MRNG)
7.3. Reproducibility
7.4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Miscellaneous
Filename | Bits | Pass |
---|---|---|
MRNG-P1234.txt | 157.843 | NO |
MRNG-P123.txt | 153.087 | NO |
MRNG-P124.txt | 12.052 | YES |
MRNG-RP1234.txt | 389.890 | NO |
MRNG-RP123.txt | 361.987 | NO |
MRNG-RP124.txt | 126.363 | YES |
Appendix B. Code Snippets
Listing A1. Displays P4 outlier detection algorithm. |
for x in range (crop_bitmap.width): |
for y in range (crop_bitmap.height): |
red, green, blue, alpha = crop_bitmap.getpixel ((y,x)) |
if prev_red > 0 or prev_green > 0 or prev_blue > 0: |
loc_dist_red = abs (prev_red - red) |
loc_dist_green = abs (prev_green - green) |
loc_dist_blue = abs (prev_blue - blue) |
if red > epsilon or green > epsilon or blue > epsilon: |
if (loc_dist_red > avg_dist_red ∗ outlier_multiplier or |
loc_dist_green > avg_dist_green ∗ outlier_multiplier or |
loc_dist_blue > avg_dist_blue ∗ outlier_multiplier): |
mrng_raw_p4_outlier=(mrng_raw_p4_outlier + str (red)+";" |
+str (green) + ";" + str (blue) + ";" + str (alpha)+";" |
+str (x) + ";" + str (y) + ";\n") |
mrng_p4_outlier = (mrng_p4_outlier |
+ str (((red % 2) + (green % 2) + (blue % 2)) % 2)) |
prev_red = red |
prev_green = green |
prev_blue = blue |
Appendix C. ‘Hits’ Supplemental Material
References
- Kurz, C. Understanding differential privacy. Significance 2021, 18, 24–27. [Google Scholar] [CrossRef]
- Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating Noise to Sensitivity in Private Data Analysis; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2006; Volume 3876, pp. 265–284. [Google Scholar] [CrossRef]
- Bosley, C.; Dodis, Y. Does Privacy Require True Randomness? In Proceedings of the 4th Conference on Theory of Cryptography, Amsterdam, The Netherlands, 21–24 February 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–20. [Google Scholar]
- Dodis, Y.; López-Alt, A.; Mironov, I.; Vadhan, S. Differential Privacy with Imperfect Randomness; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7417, pp. 497–516. [Google Scholar] [CrossRef]
- Garfinkel, S.L.; Leclerc, P. Randomness Concerns When Deploying Differential Privacy. In Proceedings of the 19th Workshop on Privacy in the Electronic Society, Online, 9 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 73–86. [Google Scholar] [CrossRef]
- Brask, J.B.; Martin, A.; Esposito, W.; Houlmann, R.; Bowles, J.; Zbinden, H.; Brunner, N. MHz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination. Phys. Rev. Appl. 2016, 7, 054018. [Google Scholar] [CrossRef]
- Quantis Quantum Random Number Generator. Available online: https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator/ (accessed on 12 November 2022).
- Kutschera, S. Construction and Evaluation of a Non-Deterministic Random Bit Generator with Mobile Sensors as Entropy Source; FH JOANNEUM University of Applied Sciences: Kapfenberg, Austria, 2019. [Google Scholar]
- Kutschera, S.; Zugaj, W.; Slany, W. Appraisal of a Random Bit Generator Utilizing Smartphone Sensors as Entropy Source. In Proceedings of the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Male, Maldives, 16–18 November 2022. [Google Scholar]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. Cosmic-Ray Extremely Distributed Observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Batanero, C.; Green, D.R.; Serrano, L.R. Randomness, its meanings and educational implications. Int. J. Math. Educ. Sci. Technol. 1998, 29, 113–123. [Google Scholar] [CrossRef]
- Bennet, D. The Development of the Mathematical Concept of Randomness; New York Univeristy: New York, NY, USA, 1993. [Google Scholar]
- Poincare, H. Foundation of Science: Chance. In The World of Mathematics; Simon & Schuster: New York, NY, USA, 1936; Translated by J.R. Newman. [Google Scholar]
- Kolmogorov, A. On tables of random numbers. Sankhya Indian J. Stat. Ser. A 1963, 25, 369–376, reprinted in Theor. Comput. Sci. 1998, 207, 387–395. [Google Scholar] [CrossRef]
- Hopf, E. On Causality, Statistics and Probability. J. Math. Phys. 1934, 17, 51–102. [Google Scholar] [CrossRef]
- Hopf, E. Über die Bedeutung der willkürlichen Funktionen für die Wahrscheinlichkeitstheorie. Jahresber. Dtsch. Math. 1936, 46, 179–195. [Google Scholar]
- Hopf, E. Ein Verteilungsproblem bei dissipativen dynamischen Systemen. Math. Ann. 1937, 114, 161–186. [Google Scholar] [CrossRef]
- Holmes, S.; Diaconis, P.; Montgomery, R. Dynamical Bias in the Coin Toss; Stanford University: Stanford, CA, USA, 2004; pp. 1–31. [Google Scholar]
- Barker, E.; Kelsey, J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators, NIST Special Publication 800-90A Revision 1; National Institute of Technology, Computer Security Division: Gaithersburg, MD, USA, 2015. [Google Scholar] [CrossRef]
- Mechalas, J.P. Intel® Digital Random Number Generator (DRNG) Software Implementation Guide Revision 2.1 Revision History; Intel Inc.: Santa Clara, CA, USA, 2018. [Google Scholar]
- Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. Npj Quantum Inf. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Sanguinetti, B.; Martin, A.; Zbinden, H.; Gisin, N. Quantum Random Number Generation on a Mobile Phone. Phys. Rev. X 2014, 4, 031056. [Google Scholar] [CrossRef]
- Bellare, M.; Canetti, R.; Krawczyk, H. Pseudorandom Functions Revisited: The Cascade Construction and its Concrete Security; IEEE: Piscataway, NJ, USA, 1996. [Google Scholar]
- Park, B.K.; Park, H.; Kim, Y.S.; Kang, J.S.; Yeom, Y.; Ye, C.; Moon, S.; Han, S.W. Practical True Random Number Generator Using CMOS Image Sensor Dark Noise. IEEE Access 2019, 7, 91407–91413. [Google Scholar] [CrossRef]
- Turan, M.S.; Barker, E.; Kelsey, J.; McKay, K.A.; Baish, M.L.; Boyle, M. Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publication 800-90B; National Institute of Technology, Computer Security Division: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
- Celi, C.; National Institute of Standards and Technology. SP800-90B_EntropyAssessment. Available online: https://github.com/usnistgov/SP800-90B_EntropyAssessment (accessed on 26 April 2023).
- Zhang, X.; Qi, L.; Tang, Z.; Zhang, Y. Portable true random number generator for personal encryption application based on smartphone camera. Electron. Lett. 2012, 50, 1841–1843. [Google Scholar] [CrossRef]
- Leschiutta, R. Java True Random Number Generator (TRNG) That Uses JPEG Images as Entropy Source. [email protected]. 2016. Available online: https://github.com/prgpascal/bluerand (accessed on 12 November 2022).
- Leschiutta, R. Parappnoid: Un’Applicazione di Messaggistica Basata su One-Time Pad. Ph.D. Thesis, Universita Degli Studi di Udine, Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Udine, Italy, 2015. [Google Scholar]
- Chen, I.T. Random Numbers Generated from Audio and Video Sources. Math. Probl. Eng. 2013, 2013, 285373. [Google Scholar] [CrossRef]
- Krhovják, J.; Švenda, P.; Matyáš, V. The Sources of Randomness in Mobile Devices. In Proceedings of the Nordsec 2007: The 12th Nordic Conference on Secure IT Systems, Reykjavik, Iceland, 11–12 October 2007. [Google Scholar]
- Reezwana, A.; Islam, T.; Bai, X.; Wildfeuer, C.F.; Ling, A.; Grieve, J.A. A quantum random number generator on a nanosatellite in low Earth orbit. Commun. Phys. 2022, 5, 314. [Google Scholar] [CrossRef]
- Villar, A.; Lohrmann, A.; Bai, X.; Vergoossen, T.; Bedington, R.; Perumangatt, C.; Lim, H.Y.; Islam, T.; Reezwana, A.; Tang, Z.; et al. Entanglement demonstration on board a nano-satellite. Optica 2020, 7, 734–737. [Google Scholar] [CrossRef]
- Calude, C.S. Borel Normality and Algorithmic Randomness. In Proceedings of the International Conference on Developments in Language Theory, Turku, Finland, 12–15 July 1993. [Google Scholar]
- Rukhin, A.; Soto, R.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-22 Revision 1; National Institute of Technology, Computer Security Division and Statistical Engineering Divison: Gaithersburg, MD, USA, 2010. [Google Scholar] [CrossRef]
- Computer Security Division; Information Technology Laboratory. Proposal to Revise SP 800-22 rev. 1A. 2022. Available online: https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-22-rev-1a (accessed on 9 November 2022).
- Computer Security Division; Information Technology Laboratory. Decision to Revise SP 800-22 rev. 1A. 2022. Available online: https://csrc.nist.gov/News/2022/decision-to-revise-nist-sp-800-22-rev-1a (accessed on 9 November 2022).
- Sulak, F.; Doğanaksoy, A.; Ege, B.; Koçak, O. Evaluation of Randomness Test Results for Short Sequences. In Proceedings of the Sequences and Their Applications—SETA 2010, Paris, France, 13–17 September 2010; Carlet, C., Pott, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 309–319. [Google Scholar]
- Martínez, A.C.; Solis, A.; Díaz Hernández Rojas, R.; U’Ren, A.B.; Hirsch, J.G.; Pérez Castillo, I. Advanced Statistical Testing of Quantum Random Number Generators. Entropy 2018, 20, 886. [Google Scholar] [CrossRef]
- Li, J.; Lin, S. New Short Binary Sequence Test Algorithm: First Interval Test. In Proceedings of the CONF-CDS 2021 2nd International Conference on Computing and Data Science, Stanford, CA, USA, 28–30 January 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- MIT Department of Physics. The Speed and Mean-Life of Cosmic-Ray Muons. In 8.13 Course Reader; 2011; pp. 76–81. Available online: http://web.mit.edu/8.13/www/pdf_files/readerfall2011.pdf (accessed on 26 April 2023).
- Mewaldt, R.A. Cosmic Rays. Available online: https://sites.srl.caltech.edu/~rmewaldt/cos_encyc.html (accessed on 26 April 2023).
- Bailey, J.; Borer, K.; Combley, F.; Drumm, H.; Krienen, F.; Lange, F.; Picasso, E.; von Ruden, W.; Farley, F.J.M.; Field, J.H.; et al. Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. Nature 1977, 268, 301–305. [Google Scholar] [CrossRef]
- Rossi, B.; Hall, D.B. Variation of the Rate of Decay of Mesotrons with Momentum. Phys. Rev. 1941, 59, 223–228. [Google Scholar] [CrossRef]
- Munteanu, D.; Moindjie, S.; Autran, J. A water tank muon spectrometer for the characterization of low energy atmospheric muons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 933, 12–17. [Google Scholar] [CrossRef]
- Cecchini, S.; Spurio, M. Atmospheric muons: Experimental aspects. Geosci. Instrum. Methods Data Syst. 2012, 1, 185–196. [Google Scholar] [CrossRef]
- Grieder, P.K.F. Exentsive Air Showers and High Energy Phenomena; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Tylka, A.; Adams, J.; Boberg, P.; Brownstein, B.; Dietrich, W.; Flueckiger, E.; Petersen, E.; Shea, M.; Smart, D.; Smith, E. CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code. IEEE Trans. Nucl. Sci. 1997, 44, 2150–2160. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Testing at the Speed of Light: The State of US Electronic Parts Space Radiation Testing Infrastructure; National Academies Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Normand, E.; Wert, J.L.; Quinn, H.; Fairbanks, T.D.; Michalak, S.; Grider, G.; Iwanchuk, P.; Morrison, J.; Wender, S.; Johnson, S. First Record of Single-Event Upset on Ground, Cray-1 Computer at Los Alamos in 1976. IEEE Trans. Nucl. Sci. 2010, 57, 3114–3120. [Google Scholar] [CrossRef]
- Normand, E. Single-event effects in avionics. IEEE Trans. Nucl. Sci. 1996, 43, 461–474. [Google Scholar] [CrossRef]
- Brazil, R. Supercomputers face a cosmic challenge. Phys. World 2021, 34, 30. [Google Scholar] [CrossRef]
- Australian Transport Safety Bureau. In-Flight Upset, 154 km West of Learmonth, Western Australia, 7 October 2008, VH-QPA, Airbus A330-303; Australian Transport Safety Bureau: Canberra, Australia, 2011.
- Bhuva, B. Alien Particles from Outer Space Are Wreaking Low-Grade Havoc on Personal Electronic Devices; Vanderbilt University—Research News: Nashville, TN, USA, 2017. [Google Scholar]
- Keller, A.M.; Wirthlin, M.J. Impact of Soft Errors on Large-Scale FPGA Cloud Computing. In Proceedings of the FPGA `19 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 272–281. [Google Scholar] [CrossRef]
- Weide-Zaage, K.; Eichin, P.; Chen, C.; Zhao, Y.; Zhao, L. COTS—Radiation effects approaches and considerations. In Proceedings of the 2017 Pan Pacific Microelectronics Symposium (Pan Pacific), Kauai, HI, USA, 6–9 February 2017; pp. 1–8. [Google Scholar]
- Squatriglia, C. Toyota’s Recall Woes May Have Started in Space. Wired (Magazine by Condé Nast) 2010. Available online: https://www.wired.com/2010/03/toyota-cosmic-rays/ (accessed on 2 November 2022).
- Whiteson, D.; Mulhearn, M.; Shimmin, C.; Cranmer, K.; Brodie, K.; Burns, D. Searching for ultra-high energy cosmic rays with smartphones. Astropart. Phys. 2016, 79, 1–9. [Google Scholar] [CrossRef]
- Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Ruggles, T.; Schultz, D.; Peacock, J.; Simons, A.L. Detecting particles with cell phones: The Distributed Electronic Cosmic-ray Observatory. arXiv 2015. [Google Scholar] [CrossRef]
- Bibrzycki, Ł.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.; Castillo, D.E.A.; et al. Towards A Global Cosmic Ray Sensor Network: CREDO Detector as the First Open-Source Mobile Application Enabling Detection of Penetrating Radiation. Symmetry 2020, 12, 1802. [Google Scholar] [CrossRef]
- Niedźwiecki, M.; Rzecki, K.; Marek, M.; Homola, P.; Smelcerz, K.; Castillo, D.A.; Smolek, K.; Hnatyk, B.; Zamora-Saa, J.; Mozgova, A.; et al. Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras. In Proceedings of the 36th International Cosmic Ray Conference—PoS ICRC2019, Madison, WI, USA, 24 July–1 August 2019. [Google Scholar] [CrossRef]
- Cosmic Ray App. Available online: https://cosmicrayapp.com/ (accessed on 2 November 2022).
- Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Piekarczyk, M.; Rzecki, K.; Sośnicki, T.; Stuglik, S.; Frontczak, M.; Homola, P.; Alvarez-Castillo, D.E.; et al. Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors. Sensors 2021, 21, 7718. [Google Scholar] [CrossRef] [PubMed]
- Verbetsky, Y.; Svanidze, M.; Ruimi, O.; Wibig, T.; Kakabadze, L.; Homola, P.; Alvarez-Castillo, D.E.; Beznosko, D.; Sarkisyan-Grinbaum, E.K.; Bar, O.; et al. First Results on the Revealing of Cognate Ancestors among the Particles of the Primary Cosmic Rays That Gave Rise to Extensive Air Showers Observed by the GELATICA Network. Symmetry 2022, 14, 1749. [Google Scholar] [CrossRef]
- Cosmic Ray App. Available online: https://github.com/StefanKutschera/mrng-prototype (accessed on 13 November 2022).
- Cosmic Ray App. Available online: https://github.com/credo-science/credo-detector-android (accessed on 23 March 2023).
- Space Weather Prediction Center. OVATION Aurora Model Forecast North; Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Machol, J.L.; Green, J.C.; Redmon, R.J.; Viereck, R.A.; Newell, P.T. Evaluation of OVATION Prime as a forecast model for visible aurorae. Space Weather 2012, 10, 3. [Google Scholar] [CrossRef]
- Newell, P.T.; Sotirelis, T.; Wing, S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J. Geophys. Res. Space Phys. 2009, 114, A9. [Google Scholar] [CrossRef]
- Space Weather Prediction Center. Solar Wind Predicted at Earth Geospace Timeline Lates 24 Hours; Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Space Weather Prediction Center. Estimated Planetary K Index (3 Hour Data); Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Space Weather Prediction Center. Space Weather Overview Incl. Solar X-ray Flux, Solar Proton Flux, Geomagnetic Activity; Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Space Weather Prediction Center. Aurora Hemispheric Power Tabular Values—Ovation Aurora Short Term Forecast; Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Space Weather Prediction Center. Daily Geomagnetic Data; Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Space Weather Prediction Center. Solar Geophysical Event Reports; Space Weather Prediction Center: Boulder, CO, USA, 2022.
- Xapsos, M. The Single Event Effects Environment of Space; Texas A&M University Bootcamp: College Station, TX, USA, 2021. [Google Scholar]
- Kutschera, S.; Slany, W.; Ratschiller, P.; Gursch, S.; Dagenborg, H. Dataset for Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator. 2023. [Data set]. Zenodo. Available online: https://zenodo.org/record/7774330 (accessed on 27 March 2023).
deviceID | Width × Height | cntDH | cntPE |
---|---|---|---|
sm_a320fl-***14bd | 640 × 480 | 2503 | 2157 |
sm_a320fl-***b4db | 640 × 480 | 15 | 44 |
sm_a320fl-***1419 | 640 × 480 | 1033 | 16 |
sm_a505fn-***YVCM | 1920 × 1080 | 1 | 752 |
mi_a1-***0804 | 1280 × 640 | 1 | 2 |
Parameter | Value |
---|---|
Length of a bitstream | 128 |
Number of bit streams | 94 |
Applied statistical tests | 1–5;11 |
Input file format | ASCII |
Block frequency test—block length (M) | 8 |
Approximate entropy test—block length (m) | 2 |
p-Value | Proportion | Statistical Test | Pass |
---|---|---|---|
0.000000 * | 26/94 * | Frequency | NO |
0.000000 * | 49/94 * | BlockFrequency | NO |
0.000000 * | 28/94 * | CumulativeSums | NO |
0.000000 * | 28/94 * | CumulativeSums | NO |
0.000000 * | 50/94 * | Runs | NO |
0.000000 * | 38/94 * | LongestRun | NO |
0.000000 * | 31/94 * | ApproximateEntropy | NO |
p-Value | Proportion | Statistical Test | Pass |
---|---|---|---|
0.000000 * | 27/94 * | Frequency | NO |
0.000000 * | 59/94 * | BlockFrequency | NO |
0.000000 * | 30/94 * | CumulativeSums | NO |
0.000000 * | 30/94 * | CumulativeSums | NO |
0.000000 * | 53/94 * | Runs | NO |
0.000000 * | 44/94 * | LongestRun | NO |
0.000000 * | 30/94 * | ApproximateEntropy | NO |
p-Value | Proportion | Statistical Test | Pass |
---|---|---|---|
0.013153 | 92/94 | Frequency | YES |
0.000677 | 94/94 | BlockFrequency | YES |
0.189397 | 93/94 | CumulativeSums | YES |
0.804337 | 93/94 | CumulativeSums | YES |
0.100508 | 93/94 | Runs | YES |
0.332797 | 92/94 | LongestRun | YES |
0.879806 | 94/94 | ApproximateEntropy | YES |
p-Value | Proportion | Statistical Test | Pass |
---|---|---|---|
0.000000 * | 26/94 * | Frequency | NO |
0.000000 * | 49/94 * | BlockFrequency | NO |
0.000000 * | 28/94 * | CumulativeSums | NO |
0.000000 * | 28/94 * | CumulativeSums | NO |
0.000000 * | 50/94 * | Runs | NO |
0.000000 * | 56/94 * | LongestRun | NO |
0.000000 * | 43/94 * | ApproximateEntropy | NO |
p-Value | Proportion | Statistical Test | Pass |
---|---|---|---|
0.000000 * | 35/94 * | Frequency | NO |
0.000000 * | 52/94 * | BlockFrequency | NO |
0.000000 * | 33/94 * | CumulativeSums | NO |
0.000000 * | 34/94 * | CumulativeSums | NO |
0.000000 * | 55/94 * | Runs | NO |
0.000000 * | 49/94 * | LongestRun | NO |
0.000000 * | 37/94 * | ApproximateEntropy | NO |
p-Value | Proportion | Statistical Test | Pass |
---|---|---|---|
0.000283 | 93/94 | Frequency | YES |
0.824517 | 93/94 | BlockFrequency | YES |
0.019334 | 93/94 | CumulativeSums | YES |
0.130453 | 92/94 | CumulativeSums | YES |
0.332797 | 93/94 | Runs | YES |
0.490050 | 93/94 | LongestRun | YES |
0.949602 | 94/94 | ApproximateEntropy | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutschera, S.; Slany, W.; Ratschiller, P.; Gursch, S.; Dagenborg, H. MRNG: Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator. Entropy 2023, 25, 854. https://doi.org/10.3390/e25060854
Kutschera S, Slany W, Ratschiller P, Gursch S, Dagenborg H. MRNG: Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator. Entropy. 2023; 25(6):854. https://doi.org/10.3390/e25060854
Chicago/Turabian StyleKutschera, Stefan, Wolfgang Slany, Patrick Ratschiller, Sarina Gursch, and Håvard Dagenborg. 2023. "MRNG: Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator" Entropy 25, no. 6: 854. https://doi.org/10.3390/e25060854
APA StyleKutschera, S., Slany, W., Ratschiller, P., Gursch, S., & Dagenborg, H. (2023). MRNG: Accessing Cosmic Radiation as an Entropy Source for a Non-Deterministic Random Number Generator. Entropy, 25(6), 854. https://doi.org/10.3390/e25060854