Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences
Abstract
:1. Introduction
2. Preliminaries
- 1.
- Non-negativity: ,
- 2.
- Identity of indiscernibles: if and only if ,
- 3.
- Symmetry: ,
- 4.
- Triangle inequality: .
2.1. Csiszár Divergences
2.1.1. Basic Properties of Csiszár Divergences
- 1.
- Non-negativity and identity of indiscernibles: with ,
- 2.
- Symmetry: ,
- 3.
- Range of values: .
- 4.
- Uniqueness: , .
3. Quantum Csiszár Distances
- a.
- ,
- b.
- , such that for all ,
- c.
- for all .
- 1.
- Take an arbitrary symmetric Csiszár divergence (cf. Equation (1)) between two classical probability distributions (see Section 2.1.1 for the properties of the defining Csiszár function ).
- 2.
- Evaluate between the two classical probability distributions resulting from taking a measurement over the quantum system in either state or .
- 3.
- Carry out an optimization of the resulting quantity obtained in the previous step over a set of measurements performed upon the quantum system.
3.1. Quantum Csiszár True Distances
3.2. Examples
3.2.1. Variational Distance
3.2.2. Hellinger Discrimination
3.2.3. Triangular Discrimination
3.2.4. Jensen–Shannon Divergence
3.2.5. Comparison between and
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilde, M.M. Quantum Information Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Csiszár, I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Magyar. Tud. Akad. Mat. Kutató Int. Közl 1963, 8, 85–108. [Google Scholar]
- Ali, S.M.; Silvey, S.D. A general class of coefficients of divergence of one distribution from another. J. R. Statist. Soc. Ser. B 1966, 28, 131–142. [Google Scholar] [CrossRef]
- Deza, M.; Deza, E. Encyclopedia of Distances, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Crooks, G.; Sivak, D.A. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics. J. Stat. Mech. 2011, 46, P06003. [Google Scholar] [CrossRef] [Green Version]
- Hiai, F.; Mosonyi, M.; Petz, D.; Bény, C. Quantum f-divergences and error correction. Rev. Math. Phys. 2011, 23, 691–747. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K. A New Quantum Version of f-Divergence; Springer: Singapore, 2018; Volume 261, pp. 229–273. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. A new quantum f-divergence for trace class operators in hilbert spaces. Entropy 2014, 16, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Hiai, F.; Petz, D. From quasi-entropy to various quantum information quantities. Publ. Res. Inst. Math. Sci. 2012, 48, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Bussandri, D.G.; Lamberti, P.W. Generalized Holevo theorem and distinguishability notions. J. Phys. A Math. Theor. 2020, 53, 45302. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.A. Distinguishability and Accessible Information in Quantum Theory. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 1996. [Google Scholar]
- Osán, T.M.; Bussandri, D.G.; Lamberti, P.W. Quantum metrics based upon classical Jensen–Shannon divergence. Phys. A Stat. Mech. Its Appl. 2022, 594, 127001. [Google Scholar] [CrossRef]
- Galindo, A.; Martín-Delgado, M.A. Information and computation: Classical and quantum aspects. Rev. Mod. Phys. 2002, 74, 347–423. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Bussandri, D.; Majtey, A.; Lamberti, P.W.; Osán, T. Generalized approach to quantify correlations in bipartite quantum systems. Quantum Inf. Process. 2019, 18, 57. [Google Scholar] [CrossRef] [Green Version]
- Bergh, B.; Datta, N.; Salzmann, R.; Wilde, M.M. Parallelization of Sequential Quantum Channel Discrimination in the Non-Asymptotic Regime. arXiv 2022, arXiv:2206.08350. [Google Scholar]
- Megier, N.; Smirne, A.; Vacchini, B. Entropic bounds on information backflow. Phys. Rev. Lett. 2021, 127, 030401. [Google Scholar] [CrossRef] [PubMed]
- Settimo, F.; Breuer, H.P.; Vacchini, B. Entropic and trace-distance-based measures of non-Markovianity. Phys. Rev. A 2022, 106, 042212. [Google Scholar] [CrossRef]
- Rudnicki, Ł.; Puchała, Z.; Horodecki, P.; Życzkowski, K. Constructive entanglement test from triangle inequality. J. Phys. A Math. Theor. 2014, 47, 424035. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, A.; Langford, N.K.; Nielsen, M.A. Distance measures to compare real and ideal quantum processes. Phys. Rev. A 2005, 71, 062310. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Horodecki, R.; Li, B.; Szarek, S.; Szarek, T. Bound on Bell inequalities by fraction of determinism and reverse triangle inequality. Phys. Rev. A 2015, 92, 032329. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, P.E.; Napolitano, R.d.J.; Marchiolli, M.A.; Foster, C.J.; Liang, Y.C. Alternative fidelity measure between quantum states. Phys. Rev. A 2008, 78, 052330. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhang, F.l.; Chen, J.l. Fidelity induced distance measures for quantum states. Phys. Lett. A 2009, 373, 3407–3409. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Ishizaka, S.; Kawachi, A.; Kimura, G.; Ogawa, T. Introduction to Quantum Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inform. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Dover Publications: New York, NY, USA, 1968. [Google Scholar]
- Vajda, I. On f–divergence and singularity of probability measures. Period. Math. Hung. 1972, 2, 223–234. [Google Scholar] [CrossRef]
- Kafka, P.; Oesterreicher, F.; Vincze, I. On powers of f–divergences defining a distance. Stud. Sci. Math. Hung. 1991, 26, 415–422. [Google Scholar]
- Österreicher, F.; Vajda, I. A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Stat. Math. 2003, 55, 639–653. [Google Scholar] [CrossRef]
- Österreicher, F. On a class of perimeter-type distances of probability distributions. Kybernetika 1996, 32, 389–393. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Huttner, B.; Muller, A.; Gautier, J.D.; Zbinden, H.; Gisin, N. Unambiguous quantum measurement of nonorthogonal states. Phys. Rev. A 1996, 54, 3783–3789. [Google Scholar] [CrossRef]
- Chefles, A. Quantum state discrimination. Contemp. Phys. 2000, 41, 401–424. [Google Scholar] [CrossRef] [Green Version]
- Rastegin, A.E. Relative error of state-dependent cloning. Phys. Rev. A 2002, 66, 042304. [Google Scholar] [CrossRef]
- Barnett, S.M.; Croke, S. Quantum state discrimination. Adv. Opt. Photon. 2009, 1, 238–278. [Google Scholar] [CrossRef]
- Helstrom, C. Quantum Detection and Estimation Theory; Mathematics in Science and Engineering: A Series of Monographs and Textbooks; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Luo, S.; Zhang, Q. Informational distance on quantum-state space. Phys. Rev. A 2004, 69, 032106. [Google Scholar] [CrossRef]
- Dragomir, S. Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications. Nonlinear Anal. Forum 2002, 7, 1–14. [Google Scholar]
- Topsoe, F. Some inequalities for information divergence and related measures of discrimination. IEEE Trans. Inf. Theory 2000, 46, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.J.; Krishnamurthy, A. Efficient first-order contextual bandits: Prediction, allocation, and triangular discrimination. Adv. Neural Inf. Process. Syst. 2021, 34, 18907–18919. [Google Scholar]
- Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900, 50, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Le Cam, L. Asymptotic Methods in Statistical Decision Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Majtey, A.P.; Lamberti, P.W.; Prato, D.P. Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 2005, 72, 052310. [Google Scholar] [CrossRef] [Green Version]
- Osán, T.M.; Bussandri, D.; Lamberti, P. Monoparametric family of metrics derived from classical Jensen–Shannon divergence. Phys. A Stat. Mech. Its Appl. 2018, 495, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Briët, J.; Harremoës, P. Properties of classical and quantum Jensen-Shannon divergence. Phys. Rev. A 2009, 79, 052311. [Google Scholar] [CrossRef] [Green Version]
- Fuglede, B.; Topsoe, F. Jensen-Shannon divergence and Hilbert space embedding. In Proceedings of the International Symposium onInformation Theory, ISIT 2004 Proceedings, Chicago, IL, USA, 27 June–2 July 2004; IEEE: Piscataway, NJ, USA, 2004; p. 31. [Google Scholar]
- Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49, 1858–1860. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Yeh, Y.H.; Mendonça, P.E.; Teh, R.Y.; Reid, M.D.; Drummond, P.D. Quantum fidelity measures for mixed states. Rep. Prog. Phys. 2019, 82, 076001. [Google Scholar] [CrossRef] [Green Version]
- Muthuganesan, R.; Sankaranarayanan, R. Fidelity based measurement induced nonlocality. Phys. Lett. A 2017, 381, 3028–3032. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Hou, J.; Qi, X. Quantum correlation based on Uhlmann Fidelity for Gaussian states. Entropy 2019, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, L.; Yuan, H. Entanglement measures induced by fidelity-based distances. Quantum Inf. Process. 2020, 19, 282. [Google Scholar] [CrossRef]
- Grace, M. Environment-invariant measure of distance between evolutions of an open quantum system. New J. Phys. 2010, 12, 015001. [Google Scholar] [CrossRef]
- Paunković, N.; Sacramento, P.; Nogueira, P.; Vieira, V.; Dugaev, V. Fidelity between partial states as a signature of quantum phase transitions. Phys. Rev. A 2008, 77, 052302. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.H.; Xi, Z.; Fan, H.; Li, Y. Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 2015, 91, 042120. [Google Scholar] [CrossRef] [Green Version]
- Schoenberg, I.J. Metric spaces and positive definite functions. Trans. Am. Math. Soc. 1938, 44, 522–536. [Google Scholar] [CrossRef]
- Berg, C.; Christensen, J.; Ressel, P. Harmonic Analysis on Semigroups; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
Csiszár Distance, | True Distance for | |
---|---|---|
Variational distance | ||
Hellinger discrimination | ||
Triangular discrimination | ||
Jensen–Shannon divergence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bussandri, D.G.; Osán, T.M. Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences. Entropy 2023, 25, 912. https://doi.org/10.3390/e25060912
Bussandri DG, Osán TM. Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences. Entropy. 2023; 25(6):912. https://doi.org/10.3390/e25060912
Chicago/Turabian StyleBussandri, Diego G., and Tristán M. Osán. 2023. "Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences" Entropy 25, no. 6: 912. https://doi.org/10.3390/e25060912
APA StyleBussandri, D. G., & Osán, T. M. (2023). Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences. Entropy, 25(6), 912. https://doi.org/10.3390/e25060912