A Fisher Information Theory of Aesthetic Preference for Complexity
Abstract
:1. Introduction
2. Theory
2.1. Preliminaries
- In the first step, we compute three measures of the amount of information in images from seven natural or human-made environments (Figure 1A). These measures use Shannon Entropy, whose normalized versions are complexities [25,42]. In this article, we measure complexities based on luminance, spatial, and chromatic information. Therefore, because we have many images per environment, we can build theories for each of the three estimated distributions (histograms or kernel-density distributions) of the distributions of complexities.
- We then fit analytical models of probability density functions to these estimated distributions (Figure 1B). The goal is to find a single model that can fit all twenty-one of them (three measures of complexity and seven environments) by simply selecting the right parameters. We make sure that the models are simple, having at most two parameters.
- Finally, we calculate the Observed Fisher Information for each of the three complexities obtained for each image (Figure 1C). This measure supplies the amount of information that the image has about the parameters of the model. Such a measure is important. Without it, we cannot be sure what the best model parameters are for the image that we currently see, because environments are constantly changing. We also calculate in this article the expected Observed Fisher Information for each environment and complexity type. This expectation is known as the Fisher Information, providing a measure of how easily the environment can be understood.
2.2. Amount of Information
2.3. Likelihood Models
2.4. Fisher Information
3. Materials and Methods
3.1. Photography
3.2. Quantitative Analysis
4. Results
4.1. Distribution of Complexities in Natural and Human-Made Environments
4.2. A Model for the Distributions of Complexities
- Finite Support. Complexities are bound between 0 and 1 (Equations (1)–(3)).
- Unimodal with a Peak Neither at 0 nor at 1.
- Skewed. The skewness is such that when the median > 0.5, the skewness is negative and vice versa.
- Leptokurtic
4.3. Fisher Information
4.4. Comparing Environments and Types of Complexity
5. Discussion
5.1. Limitations
5.2. A Likelihood Function Fitting the Distribution of Complexities
5.3. Variation in the Distribution of Complexities
5.4. Different Types of Complexities
5.5. Adaptation to Different Environments
5.6. Further Tests of Our Theory
5.7. Generalizing the Use of Observed Fisher Information
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- March, J.G. Ambiguity and accounting: The elusive link between information and decision making. Account. Organ. Soc. 1987, 12, 153–168. [Google Scholar] [CrossRef]
- Blanchard, C.G.; Labrecque, M.S.; Ruckdeschel, J.C.; Blanchard, E.B. Information and decision-making preferences of hospitalized adult cancer patients. Soc. Sci. Med. 1988, 27, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, C.R. Tourism climatology: Evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int. J. Biometeorol. 2003, 48, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, N.M.; Aleem, H. Does Amount of Information Support Aesthetic Values? Front. Neurosci. 2022, 16, 805658. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.W.; Farley, F.H. The relationship between aesthetic preference and visual complexity in absract art. Psychon. Sci. 1970, 19, 69–70. [Google Scholar] [CrossRef]
- Bies, A.J.; Blanc-Goldhammer, D.R.; Boydston, C.R.; Taylor, R.P.; Sereno, M.E. Aesthetic responses to exact fractals driven by physical complexity. Front. Hum. Neurosci. 2016, 10, 210. [Google Scholar] [CrossRef]
- Friedenberg, J.; Liby, B. Perceived beauty of random texture patterns: A preference for complexity. Acta Psychol. 2016, 168, 41–49. [Google Scholar] [CrossRef]
- Chou, C.; Chou, J.; Tyan, N.C.N. An Exploratory Study of Internet Addiction, Usage and Communication Pleasure. In Proceedings of the Association for Educational Communications and Technology Annual Meeting, St. Louis, MO, USA, 18–20 February 1998. [Google Scholar]
- Chou, C.; Hsiao, M.C. Internet addiction, usage, gratification, and pleasure experience: The Taiwan college students’ case. Comput. Educ. 2000, 35, 65–80. [Google Scholar] [CrossRef]
- Song, I.; Larose, R.; Eastin, M.S.; Lin, C.A. Internet gratifications and Internet addiction: On the uses and abuses of new media. Cyberpsychol. Behav. 2004, 7, 384–394. [Google Scholar] [CrossRef]
- Marois, R.; Ivanoff, J. Capacity limits of information processing in the brain. Trends Cogn. Sci. 2005, 9, 296–305. [Google Scholar] [CrossRef]
- Arsalidou, M.; Pascual-Leone, J.; Johnson, J.; Morris, D.; Taylor, M.J. A balancing act of the brain: Activations and deactivations driven by cognitive load. Brain Behav. 2013, 3, 273–285. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Wang, Y. Discovering the capacity of human memory. Brain Mind 2003, 4, 189–198. [Google Scholar] [CrossRef]
- Imamoglu, Ç. Complexity, Liking and Familiarity: Architecture and Non—Architecture Turkish Students’ Assessments of Traditional and Modern House Facades. J. Environ. Psychol. 2000, 20, 5–16. [Google Scholar] [CrossRef]
- Van Geert, E.; Wagemans, J. Order, complexity, and aesthetic appreciation. Psychol. Aesthet. Creat. Arts 2020, 14, 135. [Google Scholar] [CrossRef]
- North, A.C.; Hargreaves, D.J. Subjective complexity, familiarity, and liking for popular music. Psychomusicol. A J. Res. Music Cogn. 1995, 14, 77. [Google Scholar] [CrossRef]
- Berlyne, D.E. Aesthetics and psychobiology. J. Aesthet. Art Crit. 1973, 31, 553. [Google Scholar]
- Munsinger, H.; Kessen, W. Uncertainty, structure, and preference. Psychol. Monogr. Gen. Appl. 1964, 78, 1–24. [Google Scholar] [CrossRef]
- Meinhardt, J.; Pekrun, R. Attentional resource allocation to emotional events: An ERP study. Cogn. Emot. 2003, 17, 477–500. [Google Scholar] [CrossRef]
- Alonso, R.; Brocas, I.; Carrillo, J.D. Resource allocation in the brain. Rev. Econ. Stud. 2014, 81, 501–534. [Google Scholar] [CrossRef]
- Ramchandran, K.; Zeien, E.; Andreasen, N.C. Distributed neural efficiency: Intelligence and age modulate adaptive allocation of resources in the brain. Trends Neurosci. Educ. 2019, 15, 48–61. [Google Scholar] [CrossRef]
- Brielmann, A.A.; Dayan, P. A Computational Model of Aesthetic Value. Psychol. Rev. 2022, 129, 1319–1337. [Google Scholar] [CrossRef] [PubMed]
- Van de Cruys, S.; Wagemans, J. Putting reward in art: A tentative prediction error account of visual art. i-Perception 2011, 2, 1035–1062. [Google Scholar] [CrossRef] [PubMed]
- Van Geert, E.; Wagemans, J. Order, complexity, and aesthetic preferences for neatly organized compositions. Psychol. Aesthet. Creat. Arts 2021, 15, 484. [Google Scholar] [CrossRef]
- Aleem, H.; Correa-Herran, I.; Grzywacz, N.M. Inferring Master Painters’ Esthetic Biases from the Statistics of Portraits. Front. Hum. Neurosci. 2017, 11, 94. [Google Scholar] [CrossRef]
- Arnheim, R. Toward a Psychology of Art: Collected Essays; University of California Press: Oakland, CA, USA, 2010. [Google Scholar]
- Reber, R.; Schwarz, N.; Winkielman, P. Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personal. Soc. Psychol. Rev. 2004, 8, 364–382. [Google Scholar] [CrossRef]
- Winkielman, P.; Schwarz, N.; Fazendeiro, T.; Reber, R. The hedonic marking of processing fluency: Implications for evaluative judgment. Psychol. Eval. Affect. Process. Cogn. Emot. 2003, 189, 217. [Google Scholar]
- Aleem, H.; Correa-Herran, I.; Grzywacz, N.M.A. Theoretical Framework for How We Learn Aesthetic Values. Front. Hum. Neurosci. 2020, 14, 345. [Google Scholar] [CrossRef]
- Grzywacz, N.M. Nonlinear Non-Gaussian Bayesian Reinforcement Learning and Associated Rescorla-Wagner-Like Models. 2024; submitted for publication. [Google Scholar]
- Brielmann, A.A.; Dayan, P.; Berentelg, M. Modeling individual aesthetic judgments over time. Philos. Trans. R. Soc. B 2023, 379, 20220414. [Google Scholar]
- Efron, B.; Hinkley, D.V. Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika 1978, 65, 457–483. [Google Scholar] [CrossRef]
- Palmgren, J. The Fisher information matrix for log linear models arguing conditionally on observed explanatory variable. Biometrika 1981, 68, 563–566. [Google Scholar]
- Balboa, R.M.; Grzywacz, N.M. Power spectra and distribution of contrasts of natural images from different habitats. Vis. Res. 2003, 43, 2527–2537. [Google Scholar] [CrossRef] [PubMed]
- Field, D.J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 1987, 4, 2379–2394. [Google Scholar] [CrossRef] [PubMed]
- Ruderman, D.L.; Bialek, W. Statistics of natural images: Scaling in the woods. Phys. Rev. Lett. 1994, 73, 814. [Google Scholar] [CrossRef]
- Atick, J.J.; Redlich, A.N. What does the retina know about natural scenes? Neural Comput. 1992, 4, 196–210. [Google Scholar] [CrossRef]
- Balboa, R.M.; Grzywacz, N.M. The minimal local-asperity hypothesis of early retinal lateral inhibition. Neural Comput. 2000, 12, 1485–1517. [Google Scholar] [CrossRef]
- Balboa, R.M.; Grzywacz, N.M. The role of early retinal lateral inhibition: More than maximizing luminance information. Vis. Neurosci. 2000, 17, 77–89. [Google Scholar] [CrossRef]
- Bialek, W.; DeWeese, M.; Rieke, F.; Warland, D. Bits and brains: Information flow in the nervous system. Phys. A Stat. Mech. Its Appl. 1993, 200, 581–593. [Google Scholar] [CrossRef]
- Harrison, W.J.; Bays, P.M.; Rideaux, R. Neural tuning instantiates prior expectations in the human visual system. Nat. Commun. 2023, 14, 5320. [Google Scholar] [CrossRef]
- Correa-Herran, I.; Aleem, H.; Grzywacz, N.M. Evolution of Neuroaesthetic Variables in Portraits Paintings throughout the Renaissance. Entropy 2020, 22, 146. [Google Scholar] [CrossRef]
- Aitken, P.P. Judgments of pleasingness and interestingness as functions of visual complexity. J. Exp. Psychol. 1974, 103, 240. [Google Scholar] [CrossRef]
- Nicki, R.; Moss, V. Preference for non-representational art as a function of various measures of complexity. Can. J. Psychol./Rev. Can. Psychol. 1975, 29, 237. [Google Scholar] [CrossRef]
- Krishnamoorthy, K. Handbook of Statistical Distributions with Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hardy, M. List of Probability Distributions. Available online: https://en.wikipedia.org/wiki/List_of_probability_distributions (accessed on 1 November 2022).
- Losev, A. A new lineshape for fitting x-ray photoelectron peaks. Surf. Interface Anal. 1989, 14, 845–849. [Google Scholar] [CrossRef]
- Fischer, M.J. Generalized Hyperbolic Secant Distributions: With Applications to Finance; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Frieden, B.R.; Gatenby, R.A. Exploratory Data Analysis Using Fisher Information; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ly, A.; Marsman, M.; Verhagen, J.; Grasman, R.P.; Wagenmakers, E.J. A tutorial on Fisher information. J. Math. Psychol. 2017, 80, 40–55. [Google Scholar] [CrossRef]
- Figurska, M.; Stańczyk, M.; Kulesza, K. Humans cannot consciously generate random numbers sequences: Polemic study. Med. Hypotheses 2008, 70, 182–185. [Google Scholar] [CrossRef]
- Lukin, V.V.; Zriakhov, M.S.; Ponomarenko, N.N.; Krivenko, S.S.; Zhenjiang, M. Lossy Compression of Images without Visible Distortions and its Application. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; IEEE: New York, NY, USA, 2010; pp. 698–701. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Hartigan, J.A.; Hartigan, P.M. The dip test of unimodality. Ann. Stat. 1985, 13, 70–84. [Google Scholar] [CrossRef]
- D’Agostino, R. Goodness-of-Fit-Techniques; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Efron, B. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika 1981, 68, 589–599. [Google Scholar] [CrossRef]
- Cramer, J.S. The Origins and Development of the Logit Model; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Cramer, J.S. Logit Models from Economics and Other Fields; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. TRENDS Neurosci. 2004, 27, 712–719. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef]
- Friston, K.J.; Friston, D.A. A free energy formulation of music generation and perception: Helmholtz revisited. In Sound-Perception-Performance; Bader, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 43–69. [Google Scholar]
- Güçlütürk, Y.; Jacobs, R.H.; Lier, R.V. Liking versus complexity: Decomposing the inverted U-curve. Front. Hum. Neurosci. 2016, 10, 173211. [Google Scholar] [CrossRef]
- Beauvois, M.W. Quantifying aesthetic preference and perceived complexity for fractal melodies. Music. Percept. 2007, 24, 247–264. [Google Scholar] [CrossRef]
- Delplanque, J.; De Loof, E.; Janssens, C.; Verguts, T. The sound of beauty: How complexity determines aesthetic preference. Acta Psychol. 2019, 192, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Andrae, R.; Schulze-Hartung, T.; Melchior, P. Dos and don’ts of reduced chi-squared. Arxiv Prepr. 2010, 1012, 3754. [Google Scholar]
- Cavalli-Sforza, L.L.; Feldman, M.W. Cultural transmission and evolution: A quantitative approach. Monogr. Popul. Biol. 1981, 16. [Google Scholar]
- Sinclair, N.C.; Ursell, J.; South, A.; Rendell, L. From Beethoven to Beyoncé: Do Changing Aesthetic Cultures Amount to “Cumulative Cultural Evolution?”. Front. Psychol. 2022, 12, 663397. [Google Scholar] [CrossRef]
- Mesoudi, A. Cultural Evolution: How Darwinian Evolutionary Theory Can Explain Human Culture and Synthesize the Social Sciences; University of Chicago Press: Chicago, IL, USA, 2011. [Google Scholar]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef]
- Van Herzele, A.; Wiedemann, T. A monitoring tool for the provision of accessible and attractive urban green spaces. Landsc. Urban Plan. 2003, 63, 109–126. [Google Scholar] [CrossRef]
- Köppen, M. The Curse of Dimensionality. In Proceedings of the 5th Online World Conference on Soft Computing in Industrial Applications (WSC5), On the Internet, 4–18 September 2000; pp. 4–8. [Google Scholar]
- Bellman, R. Dynamic Programming; Princeton Univ Press Princeton: Princeton, NJ, USA, 1957. [Google Scholar]
- Gordon, J.; Gridley, M.C. Musical preferences as a function of stimulus complexity of piano jazz. Creat. Res. J. 2013, 25, 143–146. [Google Scholar] [CrossRef]
- Nadal, M.; Munar, E.; Marty, G.; Cela-Conde, C.J. Visual complexity and beauty appreciation: Explaining the divergence of results. Empir. Stud. Arts 2010, 28, 173–191. [Google Scholar] [CrossRef]
- Mather, K.B.; Aleem, H.; Rhee, Y.; Grzywacz, N.M. Social groups and polarization of aesthetic values from symmetry and complexity. Sci. Rep. 2023, 13, 21507. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, N.M. Stochasticity, nonlinear value functions, and update rules in learning aesthetic biases. Front. Hum. Neurosci. 2021, 15, 639081. [Google Scholar] [CrossRef] [PubMed]
- Vessel, E.A.; Starr, G.G.; Rubin, N. The brain on art: Intense aesthetic experience activates the default mode network. Front. Hum. Neurosci. 2012, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Vessel, E.A.; Starr, G.G.; Rubin, N. Art reaches within: Aesthetic experience, the self and the default mode network. Front. Neurosci. 2013, 7, 258. [Google Scholar] [CrossRef]
- Chatterjee, A.; Vartanian, O. Neuroscience of aesthetics. Ann. N. Y. Acad. Sci. 2016, 1369, 172–194. [Google Scholar] [CrossRef]
- Aleem, H.; Grzywacz, N.M. The Temporal Instability of Aesthetic Preferences. Psychol. Aesthet. Creat. Arts, 2023; advanced online publication. [Google Scholar] [CrossRef]
Complexity Type | a | µ | DF | χ2 | p-Value | Complexity of Optimal Observed Fisher Information | Optimal Observed Fisher Information | |
---|---|---|---|---|---|---|---|---|
Parks | Luminance | 2.78 | 1.75 | 47 | 33.8 | 0.92 | 0.851 | 7.73 |
Spatial | 3.15 | 1.23 | 57 | 42.2 | 0.92 | 0.773 | 9.92 | |
Chromatic | 3.62 | 0.47 | 67 | 50.3 | 0.93 | 0.615 | 13.1 | |
Campus | Luminance | 1.92 | 1.94 | 67 | 74.9 | 0.23 | 0.897 | 6.05 |
Spatial | 2.43 | 1.44 | 67 | 68.0 | 0.44 | 0.808 | 5.90 | |
Chromatic | 3.64 | 0.89 | 67 | 69.0 | 0.40 | 0.708 | 13.2 | |
Small Streets | Luminance | 1.82 | 2.29 | 57 | 40.5 | 0.95 | 0.908 | 3.31 |
Spatial | 2.37 | 1.73 | 67 | 76.0 | 0.21 | 0.849 | 5.62 | |
Chromatic | 3.41 | 1.27 | 57 | 46.5 | 0.83 | 0.780 | 11.6 | |
Large Streets | Luminance | 2.40 | 2.04 | 57 | 46.6 | 0.83 | 0.884 | 5.76 |
Spatial | 2.58 | 1.51 | 57 | 46.4 | 0.84 | 0.819 | 6.66 | |
Chromatic | 3.07 | 1.36 | 57 | 44.0 | 0.89 | 0.795 | 9.42 | |
Snowy Rural | Luminance | 4.05 | 1.52 | 47 | 27.5 | 0.98 | 0.820 | 16.4 |
Spatial | 0.768 | −0.76 | 37 | 41.1 | 0.29 | 0.318 | 0.590 | |
Chromatic | 2.36 | −0.18 | 37 | 30.3 | 0.77 | 0.455 | 5.57 | |
Malls | Luminance | 2.71 | 1.58 | 57 | 25.7 | 0.99999 | 0.822 | 7.34 |
Spatial | 3.12 | 1.19 | 57 | 51.9 | 0.66 | 0.782 | 21.3 | |
Chromatic | 3.33 | 0.998 | 57 | 40.5 | 0.95 | 0.730 | 11.1 | |
Forest | Luminance | 2.73 | 1.34 | 57 | 32.3 | 0.996 | 0.792 | 7.45 |
Spatial | 2.42 | 0.64 | 77 | 53.4 | 0.98 | 0.654 | 5.86 | |
Chromatic | 3.04 | 0.24 | 87 | 52.6 | 0.998 | 0.559 | 9.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berquet, S.; Aleem, H.; Grzywacz, N.M. A Fisher Information Theory of Aesthetic Preference for Complexity. Entropy 2024, 26, 901. https://doi.org/10.3390/e26110901
Berquet S, Aleem H, Grzywacz NM. A Fisher Information Theory of Aesthetic Preference for Complexity. Entropy. 2024; 26(11):901. https://doi.org/10.3390/e26110901
Chicago/Turabian StyleBerquet, Sébastien, Hassan Aleem, and Norberto M. Grzywacz. 2024. "A Fisher Information Theory of Aesthetic Preference for Complexity" Entropy 26, no. 11: 901. https://doi.org/10.3390/e26110901
APA StyleBerquet, S., Aleem, H., & Grzywacz, N. M. (2024). A Fisher Information Theory of Aesthetic Preference for Complexity. Entropy, 26(11), 901. https://doi.org/10.3390/e26110901