Exploring a New Application of Construct Specification Equations (CSEs) and Entropy: A Pilot Study with Balance Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements of Human Abilities
2.2. Balance Measurements and Berg’s Balance Scale (BBS)
- Kornetti et al. [37] recruited 100 community-dwelling veterans referred for balance deficits to examine the measurement properties of the BBS;
- La Porta et al. [38] used a clinical sample with 302 observations from patients with a neurologic disease requiring rehabilitation admitted either as inpatients or outpatients to examine the measurement properties of the BBS.
2.3. Case Study I: Definitions, Collection, and Transformation of Explanatory Variables
2.4. Case Study I: Formulation and Evaluation of the CSE
2.5. Case Study II: Data and Design
3. Results
3.1. Case Study I: Development of CSEs for Balance Task Difficulty
3.2. Case Study II: Exploration of Using Entropy to Explain Balance Task Difficulty
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Cano, S.J.; Pendrill, L.R.; Melin, J.; Fisher, W.P. Towards Consensus Measurement Standards for Patient-Centered Outcomes. Measurement 2019, 141, 62–69. [Google Scholar] [CrossRef]
- Browne, J.P.; Cano, S.J.; Smith, S. Using Patient-Reported Outcome Measures to Improve Health Care. Med. Care 2017, 55, 901–904. [Google Scholar] [CrossRef]
- Wallström, S.; Ekman, I. Person-Centred Care in Clinical Assessment. Eur. J. Cardiovasc. Nurs. 2018, 17, 576–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesio, L.; Caronni, A.; Kumbhare, D.; Scarano, S. Interpreting Results from Rasch Analysis 1. The “Most Likely” Measures Coming from the Model. Disabil. Rehabil. 2023, 1–13. [Google Scholar] [CrossRef]
- Pendrill, L. Man as a Measurement Instrument. NCSLI Meas. 2014, 9, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Melin, J.; Cano, S.; Pendrill, L. The Role of Entropy in Construct Specification Equations (CSE) to Improve the Validity of Memory Tests. Entropy 2021, 23, 212. [Google Scholar] [CrossRef]
- Stenner, A.J.; Smith, M.; Burdick, D.S. Toward a Theory of Construct Definition. J. Educ. Meas. 1983, 20, 305–316. [Google Scholar] [CrossRef]
- Stenner, A.J.; Smith, M. Testing Construct Theories. Percept Mot Ski. 1982, 55, 415–426. [Google Scholar] [CrossRef]
- Rasch, G. Studies in Mathematical Psychology: I. Probabilistic Models for Some Intelligence and Attainment Tests; Nielsen & Lydiche: Oxford, UK, 1960. [Google Scholar]
- Stenner, A.J.; Burdick, H.; Sanford, E.E.; Burdick, D.S. How Accurate Are Lexile Text Measures? J. Appl. Meas. 2006, 7, 307–322. [Google Scholar] [PubMed]
- McKenna, S.P.; Heaney, A.; Wilburn, J.; Stenner, A.J. Measurement of Patient-Reported Outcomes. 1: The Search for the Holy Grail. J. Med. Econ. 2019, 22, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, S.P.; Heaney, A.; Wilburn, J. Measurement of Patient-Reported Outcomes. 2: Are Current Measures Failing Us? J. Med. Econ. 2019, 22, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendrill, L. Quality Assured Measurement: Unification across Social and Physical Sciences; Springer Series in Measurement Science and Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-030-28694-1. [Google Scholar]
- Fisher, W.P. A Predictive Theory for the Calibration of Physical Functioning Patient Survey Items. SSRN J. 2012. [Google Scholar] [CrossRef]
- Adroher, N.D.; Tennant, A. Supporting Construct Validity of the Evaluation of Daily Activity Questionnaire Using Linear Logistic Test Models. Qual. Life Res. 2019, 28, 1627–1639. [Google Scholar] [CrossRef]
- Melin, J.; Cano, S.; Flöel, A.; Göschel, L.; Pendrill, L. The Role of Entropy in Construct Specification Equations (CSE) to Improve the Validity of Memory Tests: Extension to Word Lists. Entropy 2022, 24, 934. [Google Scholar] [CrossRef]
- Melin, J.; Pendrill, L.R. The Role of Construct Specification Equations and Entropy in the Measurement of Memory. In Person-Centered Outcome Metrology: Principles and Applications for High Stakes Decision Making; Fisher, W.P., Jr., Cano, S.J., Eds.; Springer Series in Measurement Science and Technology; Springer International Publishing: Cham, Switzerland, 2023; pp. 269–309. ISBN 978-3-031-07465-3. [Google Scholar]
- Melin, J.; Regnault, A.; Cano, S.; Pendrill, L. Neuropsychological Assessments: Word Learning Tests and Diagnostic Potential of Serial Position Effects; CIM International Metrology Congress: Lyon, France, 2021. [Google Scholar]
- Pendrill, L.R.; Melin, J.; Cano, S.J. Entropy-Based Explanations of Multidimensionality in Ordinal Responses; In Joint Workshop of ENBIS and MATHMET, Virtual. 2021. Available online: https://drive.google.com/drive/folders/1zVlzy3SKvbdxBdiCqe2AyDGLH7hfa-Ty (accessed on 1 July 2022).
- Melin, J.; Pendrill, L.R.; Cano, S.J. EMPIR NeuroMET 15HLT04 consortium Towards Patient-Centred Cognition Metrics. J. Phys. Conf. Ser. 2019, 1379, 012029. [Google Scholar] [CrossRef]
- Melin, J.; Cano, S.J.; Flöel, A.; Göschel, L.; Pendrill, L.R. Construct Specification Equations: ‘Recipes’ for Certified Reference Materials in Cognitive Measurement. Meas. Sens. 2021, 18, 100290. [Google Scholar] [CrossRef]
- Pendrill, L.R.; Karlsson, H.; Fischer, N.; Demeyer, S.; Allard, A. A Guide to Decision-Making and Conformity Assessment. In EMRP Project (2012–5) NEW04 Novel Mathematical and Statistical Approaches to Uncertainty Evaluation; 2015; Available online: https://www.ptb.de/emrp/fileadmin/documents/nmasatue/NEW04/Papers/NEW04_WP3_Guide_150529.zip (accessed on 12 April 2023).
- Melin, J.; Pendrill, L.; Fisher, W.P., Jr. A Construct Specification Equation (CSE) with Qualitative Explanatory Variables: A Worked Example. In Proceedings of the International Objective Measurement Workshop, Virtual, 1 December 2021. [Google Scholar]
- Hirsh, J.B.; Mar, R.A.; Peterson, J.B. Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety. Psychol. Rev. 2012, 119, 304–320. [Google Scholar] [CrossRef] [Green Version]
- Rossi-Arnaud, C.; Pieroni, L.; Baddeley, A. Symmetry and Binding in Visuo-Spatial Working Memory. Neuroscience 2006, 139, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.A.; Hung, C.-J. Attentional Focus Influences Sample Entropy in a Balancing Task. Hum. Mov. Sci. 2020, 72, 102631. [Google Scholar] [CrossRef] [PubMed]
- Cordier, P.; France, M.M.; Pailhous, J.; Bolon, P. Entropy as a Global Variable of the Learning Process. Hum. Mov. Sci. 1994, 13, 745–763. [Google Scholar] [CrossRef]
- Zhou, J.; Habtemariam, D.; Iloputaife, I.; Lipsitz, L.A.; Manor, B. The Complexity of Standing Postural Sway Associates with Future Falls in Community-Dwelling Older Adults: The MOBILIZE Boston Study. Sci. Rep. 2017, 7, 2924. [Google Scholar] [CrossRef] [Green Version]
- Gow, B.J.; Peng, C.-K.; Wayne, P.M.; Ahn, A.C. Multiscale Entropy Analysis of Center-of-Pressure Dynamics in Human Postural Control: Methodological Considerations. Entropy 2015, 17, 7926–7947. [Google Scholar] [CrossRef] [Green Version]
- Boregowda, S.; Handy, R.; Sleeth, D.; Merryweather, A. Measuring Entropy Change in a Human Physiological System. J. Thermodyn. 2016, 2016, 932710. [Google Scholar] [CrossRef] [Green Version]
- Marsik, F.; Mejsnar, J. The Balance of Entropy Underlying Muscle Performance. J. Non-Equilibi. Theromodyn. 1994, 19, 197–216. [Google Scholar]
- Commons, M.L.; Gane-McCalla, R.; Barker, C.D.; Li, E.Y. The Model of Hierarchical Complexity as a Measurement System. Behav. Dev. Bull. 2014, 19, 9–14. [Google Scholar] [CrossRef]
- Commons, M.L.; Adhikari, D.; Giri, S.; Weinberg, M.; Baran, J.J.; Malik, E. Measuring Developmental Outcomes in Autism Spectrum Disorder (ASD). Behav. Dev. Bull. 2017, 22, 197–208. [Google Scholar] [CrossRef]
- Pendrill, L.R. Assuring Measurement Quality in Person-Centred Healthcare. Meas. Sci. Technol. 2018, 29, 034003. [Google Scholar] [CrossRef]
- Melin, J.; Cano, S.J.; Flöel, A.; Göschel, L.; Pendrill, L.R. Metrological Advancements in Cognitive Measurement: A Worked Example with the NeuroMET Memory Metric Providing More Reliability and Efficiency. Meas. Sens. 2022, 25, 100658. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring Balance in the Elderly: Validation of an Instrument. Can. J. Public Health 1992, 83 (Suppl. 2), S7–S11. [Google Scholar]
- Kornetti, D.L.; Fritz, S.L.; Chiu, Y.-P.; Light, K.E.; Velozo, C.A. Rating Scale Analysis of the Berg Balance Scale11No Commercial Party Having a Direct Financial Interest in the Results of the Research Supporting This Article Has or Will Confer a Benefit upon the Author(s) or upon Any Organization with Which the Author(s) Is/Are Associated. Arch. Phys. Med. Rehabil. 2004, 85, 1128–1135. [Google Scholar] [CrossRef]
- La Porta, F.; Caselli, S.; Susassi, S.; Cavallini, P.; Tennant, A.; Franceschini, M. Is the Berg Balance Scale an Internally Valid and Reliable Measure of Balance Across Different Etiologies in Neurorehabilitation? A Revisited Rasch Analysis Study. Arch. Phys. Med. Rehabil. 2012, 93, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Franzén, J.; Carlsson, K. Utforskande av förklarande variabler för en uppgifts svårighetsgrad: Analys av Bergs Balansskala utifrån ett fysioterapeutiskt perspektiv. 2022. Available online: https://gupea.ub.gu.se/handle/2077/73319 (accessed on 12 April 2023).
- Spearman, C. Correlation Calculated from Faulty Data. Br. J. Psychol. 1910, 3, 271–295. [Google Scholar] [CrossRef]
- Guide to the Expression of Measurement Uncertainty; International Bureau of Weights and Measures: Sèvres, France, 2008.
- Green, K.E.; Smith, R.M. A Comparison of Two Methods of Decomposing Item Difficulties. J. Educ. Stat. 1987, 12, 369. [Google Scholar] [CrossRef]
- Wright, B. Errors, Variances and Correlations 1991. Available online: https://www.rasch.org/rmt/rmt52i.htm (accessed on 12 April 2023).
- Muchinsky, P.M. The Correction for Attenuation. Educ. Psychol. Meas. 1996, 56, 63–75. [Google Scholar] [CrossRef]
- Cano, S.; Barrett, L.; Zajicek, J.; Hobart, J. Dimensionality Is a Relative Concept. Mult. Scler. J. 2011, 17, 893–894. [Google Scholar] [CrossRef]
Explanatory Variables | Kornetti et al. [37] | La Porta et al. [38] |
---|---|---|
Demands for head movement | 0.07 | −0.28 * |
Demands for body movement | −0.02 | −0.35 * |
Demands for range of movement feet | 0.03 | −0.17 |
Demands for range of movement knees | −0.04 | −0.19 |
Demands for range of movement hips | 0.00 | −0.06 |
Demands power in foot muscles | 0.40 * | 0.13 |
Demands power in knee muscles | 0.14 | −0.25 * |
Demands power in hip muscles | 0.24 * | −0.14 |
Demands power in back muscles | −0.18 | −0.23 * |
Demands for coordination | 0.42 * | 0.17 |
Complexity | 0.56 * | 0.30 * |
Explanatory Variables | Kornetti et al. [37] | La Porta et al. [38] |
---|---|---|
Intercept | −1.19 (1.68) | −1.99 (2.62) |
Demands for head movement | −0.14 (46) | |
Demands for body movement | −0.05 (17) | |
Demands power in foot muscles | 0.74 (1.10) | |
Demands power in knee muscles | −0.12 (31) | |
Demands power in hip muscles | −0.44 (73) | |
Demands power in back muscles | −0.08 (11) | |
Demands for coordination | −0.27 (20) | |
Complexity | 0.54 (52) | 0.28 (19) |
Balance Task | Kornetti et al. [37] | La Porta et al. [38] | Complexity |
---|---|---|---|
BBS07: standing close feet | 1.6 (0.40) | −0.49 (0.30) | −0.06 (2.8) |
BBS013: tandem stance | 5.7 (0.52) | 1.81 (0.29) | 10.08 (12.7) |
BBS014: standing on one leg | 2.4 (0.38) | 1.99 (0.30) | 10.08 (12.7) |
Balance Task | Kornetti et al. [37] | La Porta et al. [38] | Body Movement | Demands for Power in Feet Muscles | Demands for Power in Knees Muscles | Demands for Power in Hips Muscles | Demands for Power in Back Muscles |
---|---|---|---|---|---|---|---|
BBS07: standing close feet | 1.6 (0.40) | −0.49 (0.30) | −4.35 (7.66) | −0.13 (2.22) | −1.75 (2.78) | 0.41 (3.02) | −2.59 (2.66) |
BBS013: tandem stance | 5.7 (0.52) | 1.81 (0.29) | −6.02 (17.38) | 4.05 (2.34) | 3.9 (4.84) | 3.87 (5.1) | −6.64 (8.14) |
BBS014: standing on one leg | 2.4 (0.38) | 1.99 (0.30) | −6.02 (17.38) | 5.5 (3.78) | 9.21 (3.18) | 11.27 (4.1) | −0.81 (2.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melin, J.; Fridberg, H.; Hansson, E.E.; Smedberg, D.; Pendrill, L. Exploring a New Application of Construct Specification Equations (CSEs) and Entropy: A Pilot Study with Balance Measurements. Entropy 2023, 25, 940. https://doi.org/10.3390/e25060940
Melin J, Fridberg H, Hansson EE, Smedberg D, Pendrill L. Exploring a New Application of Construct Specification Equations (CSEs) and Entropy: A Pilot Study with Balance Measurements. Entropy. 2023; 25(6):940. https://doi.org/10.3390/e25060940
Chicago/Turabian StyleMelin, Jeanette, Helena Fridberg, Eva Ekvall Hansson, Daniel Smedberg, and Leslie Pendrill. 2023. "Exploring a New Application of Construct Specification Equations (CSEs) and Entropy: A Pilot Study with Balance Measurements" Entropy 25, no. 6: 940. https://doi.org/10.3390/e25060940
APA StyleMelin, J., Fridberg, H., Hansson, E. E., Smedberg, D., & Pendrill, L. (2023). Exploring a New Application of Construct Specification Equations (CSEs) and Entropy: A Pilot Study with Balance Measurements. Entropy, 25(6), 940. https://doi.org/10.3390/e25060940