Fisher Information as General Metrics of Quantum Synchronization
Abstract
:1. Introduction
2. Oscillator Model and Synchronization Measures
3. 1-to-1 Synchronization
4. Squeezing Enhances 2-to-1 Synchronization
5. Effects of Noise
6. Correlations between Measures
7. Asymmetrical Synchronization
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Analytical Solutions Using Density Matrix Ansatz
References
- Strogatz, S.H. Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life; Hachette: London, UK, 2012. [Google Scholar]
- Pikovsky, A.; Rosenblum, M. Synchronization. Scholarpedia 2007, 2, 1459. [Google Scholar] [CrossRef]
- Strogatz, S.H.; Abrams, D.M.; McRobie, A.; Eckhardt, B.; Ott, E. Crowd synchrony on the Millennium Bridge. Nature 2005, 438, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Selivanov, A.A.; Lehnert, J.; Dahms, T.; Hövel, P.; Fradkov, A.L.; Schöll, E. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E 2012, 85, 016201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.M.; Ou, C.Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 2008, 35, 705–717. [Google Scholar] [CrossRef]
- Barrón, M.A.; Sen, M. Synchronization of four coupled van der Pol oscillators. Nonlinear Dyn. 2009, 56, 357–367. [Google Scholar] [CrossRef]
- Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, 23–29 January 1975; Springer: Berlin/Heidelberg, Germany, 1975; pp. 420–422. [Google Scholar]
- Rössler, O. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Ahmadi, N.; Pei, Y.; Pechenizkiy, M. Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model. Phys. A Stat. Mech. Its Appl. 2019, 520, 289–308. [Google Scholar] [CrossRef]
- Deng, Z.; Arsenault, S.; Mao, L.; Arnold, J. Measuring synchronization of stochastic oscillators in biology. J. Phys. Conf. Ser. 2016, 750, 012001. [Google Scholar] [CrossRef]
- Lörch, N.; Amitai, E.; Nunnenkamp, A.; Bruder, C. Genuine Quantum Signatures in Synchronization of Anharmonic Self-Oscillators. Phys. Rev. Lett. 2016, 117, 073601. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.E.; Sadeghpour, H. Quantum synchronization of quantum van der Pol oscillators with trapped ions. Phys. Rev. Lett. 2013, 111, 234101. [Google Scholar] [CrossRef] [Green Version]
- Walter, S.; Nunnenkamp, A.; Bruder, C. Quantum synchronization of a driven self-sustained oscillator. Phys. Rev. Lett. 2014, 112, 094102. [Google Scholar] [CrossRef] [Green Version]
- Walter, S.; Nunnenkamp, A.; Bruder, C. Quantum synchronization of two Van der Pol oscillators. Ann. Phys. 2015, 527, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Jaseem, N.; Hajdušek, M.; Solanki, P.; Kwek, L.C.; Fazio, R.; Vinjanampathy, S. Generalized measure of quantum synchronization. Phys. Rev. Res. 2020, 2, 043287. [Google Scholar] [CrossRef]
- Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R. Measures of quantum synchronization in continuous variable systems. Phys. Rev. Lett. 2013, 111, 103605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonar, S.; Hajdušek, M.; Mukherjee, M.; Fazio, R.; Vedral, V.; Vinjanampathy, S.; Kwek, L.C. Squeezing Enhances Quantum Synchronization. Phys. Rev. Lett. 2018, 120, 163601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, T.; Kronwald, A.; Marquardt, F. Noise-induced transitions in optomechanical synchronization. New J. Phys. 2016, 18, 013043. [Google Scholar] [CrossRef]
- Frieden, B.R. Fisher information, disorder, and the equilibrium distributions of physics. Phys. Rev. A 1990, 41, 4265. [Google Scholar] [CrossRef]
- Frieden, B.R. Science from Fisher Information: A Unification; Cambridge University Press: Singapore, 2004. [Google Scholar]
- Luo, S. Quantum Fisher Information and Uncertainty Relations. Lett. Math. Phys. 2000, 53, 243–251. [Google Scholar] [CrossRef]
- Luo, S. Wigner-Yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 2004, 132, 885–890. [Google Scholar] [CrossRef]
- Song, H.; Luo, S.; Hong, Y. Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 2015, 91, 042110. [Google Scholar] [CrossRef]
- Li, N.; Luo, S. Entanglement detection via quantum Fisher information. Phys. Rev. A 2013, 88, 014301. [Google Scholar] [CrossRef]
- Hong, Y.; Qi, X.; Gao, T.; Yan, F. Detection of multipartite entanglement via quantum Fisher information. Europhys. Lett. 2021, 134, 60006. [Google Scholar] [CrossRef]
- Dell’Anna, F.; Pradhan, S.; Boschi, C.D.E.; Ercolessi, E. Quantum Fisher Information and multipartite entanglement in spin-1 chains. arXiv 2023, arXiv:2307.02407. [Google Scholar]
- Lu, X.M.; Yu, S.; Oh, C.H. Robust quantum metrological schemes based on protection of quantum Fisher information. Nat. Commun. 2015, 6, 7282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Pang, S.; Jordan, A.N. Achieving Heisenberg scaling on measurement of a three-qubit system via quantum error correction. Phys. Rev. A 2022, 106, 052609. [Google Scholar] [CrossRef]
- Shen, Y.; Mok, W.K.; Noh, C.; Liu, A.Q.; Kwek, L.C.; Fan, W.; Chia, A. Quantum synchronization effects induced by strong nonlinearities. Phys. Rev. A 2023, 107, 053713. [Google Scholar] [CrossRef]
- Chia, A.; Kwek, L.C.; Noh, C. Relaxation oscillations and frequency entrainment in quantum mechanics. Phys. Rev. E 2020, 102, 042213. [Google Scholar] [CrossRef]
- Mok, W.K.; Kwek, L.C.; Heimonen, H. Synchronization boost with single-photon dissipation in the deep quantum regime. Phys. Rev. Res. 2020, 2, 033422. [Google Scholar] [CrossRef]
- Kato, Y.; Nakao, H. Enhancement of quantum synchronization via continuous measurement and feedback control. New J. Phys. 2021, 23, 013007. [Google Scholar] [CrossRef]
- Shen, Y.; Soh, H.Y.; Fan, W.; Kwek, L.C. Enhancing quantum synchronization through homodyne measurement and squeezing. arXiv 2023, arXiv:2302.13465. [Google Scholar]
- Barak, R.; Ben-Aryeh, Y. Non-orthogonal positive operator valued measure phase distributions of one-and two-mode electromagnetic fields. J. Opt. B Quantum Semiclassical Opt. 2005, 7, 123. [Google Scholar] [CrossRef]
- Hush, M.R.; Li, W.; Genway, S.; Lesanovsky, I.; Armour, A.D. Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers. Phys. Rev. A 2015, 91, 061401. [Google Scholar] [CrossRef] [Green Version]
- Lörch, N.; Nigg, S.E.; Nunnenkamp, A.; Tiwari, R.P.; Bruder, C. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators. Phys. Rev. Lett. 2017, 118, 243602. [Google Scholar] [CrossRef] [Green Version]
- Pewsey, A.; Neuhäuser, M.; Ruxton, G.D. Circular Statistics in R; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Kalloniatis, A.C.; Zuparic, M.L.; Prokopenko, M. Fisher information and criticality in the Kuramoto model of nonidentical oscillators. Phys. Rev. E 2018, 98, 022302. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.; Vieira, J.; Leonel, E.D. Fisher information of the kuramoto model: A geometric reading on synchronization. Phys. D Nonlinear Phenom. 2021, 423, 132926. [Google Scholar] [CrossRef]
- Yue, J.D.; Zhang, Y.R.; Fan, H. Operation-triggered quantum clock synchronization. Phys. Rev. A 2015, 92, 032321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Zhang, Y.R.; Mu, L.Z.; Fan, H. Criterion for remote clock synchronization with Heisenberg-scaling accuracy. Phys. Rev. A 2013, 88, 052314. [Google Scholar] [CrossRef] [Green Version]
- Jozsa, R.; Abrams, D.S.; Dowling, J.P.; Williams, C.P. Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 2000, 85, 2010. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Luo, S. Clocks and Fisher information. Theor. Math. Phys. 2010, 165, 1552–1564. [Google Scholar] [CrossRef]
- Steven, M.K. Fundamentals of Statistical Signal Processing; PTR Prentice-Hall: Englewood Cliffs, NJ, USA, 1993; Volume 10, p. 151045. [Google Scholar]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef]
- Westfall, P.H. Kurtosis as Peakedness, 1905–2014. R.I.P. Am. Stat. 2014, 68, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, M.G.A. Quantum Estimation for Quantum Technology. Int. J. Quantum Inf. 2009, 7, 125–137. [Google Scholar] [CrossRef]
- Rath, A.; Branciard, C.; Minguzzi, A.; Vermersch, B. Quantum Fisher Information from Randomized Measurements. Phys. Rev. Lett. 2021, 127, 260501. [Google Scholar] [CrossRef] [PubMed]
- Fröwis, F.; Sekatski, P.; Dür, W. Detecting Large Quantum Fisher Information with Finite Measurement Precision. Phys. Rev. Lett. 2016, 116, 090801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Li, D.; Wang, J.; Chu, Y.; Yang, P.; Gong, M.; Goldman, N.; Cai, J. Experimental estimation of the quantum Fisher information from randomized measurements. Phys. Rev. Res. 2021, 3, 043122. [Google Scholar] [CrossRef]
- Daniel, A.; Bruder, C.; Koppenhöfer, M. Geometric Phase in Quantum Synchronization. arXiv 2023, arXiv:2302.08866. [Google Scholar] [CrossRef]
- Tong, D.; Sjöqvist, E.; Kwek, L.C.; Oh, C.H. Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 2004, 93, 080405. [Google Scholar] [CrossRef] [Green Version]
- Ameri, V.; Eghbali-Arani, M.; Mari, A.; Farace, A.; Kheirandish, F.; Giovannetti, V.; Fazio, R. Mutual information as an order parameter for quantum synchronization. Phys. Rev. A 2015, 91, 012301. [Google Scholar] [CrossRef] [Green Version]
- Eneriz, H.; Rossatto, D.; Cárdenas-López, F.A.; Solano, E.; Sanz, M. Degree of quantumness in quantum synchronization. Sci. Rep. 2019, 9, 19933. [Google Scholar] [CrossRef] [Green Version]
- Leghtas, Z.; Touzard, S.; Pop, I.M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K.M.; Narla, A.; Shankar, S.; Hatridge, M.J.; et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 2015, 347, 853–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutt, A.; Luke, K.; Manipatruni, S.; Gaeta, A.L.; Nussenzveig, P.; Lipson, M. On-chip optical squeezing. Phys. Rev. Appl. 2015, 3, 044005. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 2017, 684, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Nation, P.; Nori, F. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2012, 183, 1760–1772. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Nation, P.; Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013, 184, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L.; Glogower, J. Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1964, 1, 49–61. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Soh, H.Y.; Kwek, L.-C.; Fan, W. Fisher Information as General Metrics of Quantum Synchronization. Entropy 2023, 25, 1116. https://doi.org/10.3390/e25081116
Shen Y, Soh HY, Kwek L-C, Fan W. Fisher Information as General Metrics of Quantum Synchronization. Entropy. 2023; 25(8):1116. https://doi.org/10.3390/e25081116
Chicago/Turabian StyleShen, Yuan, Hong Yi Soh, Leong-Chuan Kwek, and Weijun Fan. 2023. "Fisher Information as General Metrics of Quantum Synchronization" Entropy 25, no. 8: 1116. https://doi.org/10.3390/e25081116
APA StyleShen, Y., Soh, H. Y., Kwek, L. -C., & Fan, W. (2023). Fisher Information as General Metrics of Quantum Synchronization. Entropy, 25(8), 1116. https://doi.org/10.3390/e25081116