Microgravity Spherical Droplet Evaporation and Entropy Effects
Abstract
:1. Introduction
2. Entropy Balance Equation Derivation for Reacting Flows
3. Droplet Evaporation Model (d2 Law)
4. Numerical Model
5. Model Validation
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CV | Control volume |
HCCI | Homogeneous charge compression ignition |
LTC | Low-temperature combustion |
NTC | Negative temperature coefficient |
NOx | Nitrogen oxides |
PM | Particulate matter |
PCCI | Pre-mixed-charged compression ignition |
RCCI | Reactivity-controlled compression ignition |
References
- Shim, E.; Park, H.; Bae, C. Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel 2020, 262, 116436. [Google Scholar] [CrossRef]
- Srivatsa, C.; Mattson, J.; Depcik, C. Investigating Pre-Mixed Charge Compression Ignition Combustion in a High Compression Ratio Engine. SAE Technical Paper. 2018. Available online: https://www.sae.org/publications/technical-papers/content/2018-01-0900/ (accessed on 13 July 2023).
- Johnson, T.V. Diesel emission control in review. SAE Int. J. Fuels Lubr. 2009, 1, 68–81. [Google Scholar] [CrossRef]
- Krishnamoorthi, M.; Malayalamurthi, R.; He, Z.; Kandasamy, S. A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renew. Sustain. Energy Rev. 2019, 116, 109404. [Google Scholar] [CrossRef]
- Pelucchi, M.; Bissoli, M.; Cavallotti, C.; Cuoci, A.; Faravelli, T.; Frassoldati, A.; Ranzi, E.; Stagni, A. Improved kinetic model of the low-temperature oxidation of n-heptane. Energy Fuels 2014, 28, 7178–7193. [Google Scholar] [CrossRef]
- Saxena, S.; Bedoya, I.D. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Prog. Energy Combust. Sci. 2013, 39, 457–488. [Google Scholar] [CrossRef]
- Yoo, C.S.; Lu, T.; Chen, J.H.; Law, C.K. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame 2011, 158, 1727–1741. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, P.; Zhang, P.; Ren, Z.; He, X.; Law, C.K. On the crossover temperature and lower turnover state in the NTC regime. Proc. Combust. Inst. 2017, 36, 343–353. [Google Scholar] [CrossRef]
- Farouk, T.; Hicks, M.; Dryer, F. Multistage oscillatory “Cool Flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition. Proc. Combust. Inst. 2015, 35, 1701–1708. [Google Scholar] [CrossRef]
- Nayagam, V.; Dietrich, D.L.; Hicks, M.C.; Williams, F.A. Cool-flame extinction during n-alkane droplet combustion in microgravity. Combust. Flame 2015, 162, 2140–2147. [Google Scholar] [CrossRef]
- Tanabe, M.; Bolik, T.; Eigenbrod, C.; Rath, H.; Sato, J.; Kono, M. Spontaneous ignition of liquid droplets from a view of non-homogeneous mixture formation and transient chemical reactions. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1996; pp. 1637–1643. [Google Scholar]
- Choi, M.Y.; Dryer, F.L. Microgravity droplet combustion. In Microgravity Combustion: Fire in Free Fall, Combustion Treatise; Academic Press: Cambridge, MA, USA, 2001; pp. 183–297. Available online: https://www.amazon.com/Microgravity-Combustion-Fire-Free-Treatise/dp/0125981902 (accessed on 13 July 2023).
- Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E. Numerical modeling of auto-ignition of isolated fuel droplets in microgravity. Proc. Combust. Inst. 2015, 35, 1621–1627. [Google Scholar] [CrossRef]
- Godsave, G. Studies of the combustion of drops in a fuel spray—The burning of single drops of fuel. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1953; pp. 818–830. [Google Scholar]
- Spalding, D.B. Combustion of liquid fuels. Nature 1950, 165, 160. [Google Scholar] [CrossRef]
- Kumagai, S.; Isoda, H. Combustion of fuel droplets in a falling chamber. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1975; pp. 726–731. [Google Scholar]
- Marchese, A.J.; Dryer, F.L. The effect of liquid mass transport on the combustion and extinction of bicomponent droplets of methanol and water. Combust. Flame 1996, 105, 104–122. [Google Scholar] [CrossRef]
- Law, C. Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 1982, 8, 171–201. [Google Scholar] [CrossRef]
- Sirignano, W.A. Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 1983, 9, 291–322. [Google Scholar] [CrossRef]
- Williams, F. Ignition and burning of single liquid droplets. Acta Astronaut. 1985, 12, 547–553. [Google Scholar] [CrossRef]
- Nomura, H.; Ujiie, Y.; Rath, H.J.; Sato, J.i.; Kono, M. Experimental study on high-pressure droplet evaporation using microgravity conditions. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1996; pp. 1267–1273. [Google Scholar]
- Tanabe, M.; Kono, M.; Sato, J.; Koenig, J.; Eigenbrod, C.; Dinkelacker, F.; Rath Zarm, H. Two stage ignition of n-heptane isolated droplets. Combust. Sci. Technol. 1995, 108, 103–119. [Google Scholar] [CrossRef]
- Farouk, T.I.; Dryer, F.L. Isolated n-heptane droplet combustion in microgravity:“Cool Flames”–Two-stage combustion. Combust. Flame 2014, 161, 565–581. [Google Scholar] [CrossRef]
- Cuoci, A.; Mehl, M.; Buzzi-Ferraris, G.; Faravelli, T.; Manca, D.; Ranzi, E. Autoignition and burning rates of fuel droplets under microgravity. Combust. Flame 2005, 143, 211–226. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, W.; Liu, Y.C. A cell model analysis for droplets inside non-dilute n-heptane droplet clouds near autoignition limit. Int. J. Heat Mass Transf. 2021, 175, 121189. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, C.; Wang, M.; Liu, D.; Yang, X.; Lee, C.-F. Availability analysis of n-heptane/iso-octane blends during low-temperature engine combustion using a single-zone combustion model. Energy Convers. Manag. 2014, 84, 613–622. [Google Scholar] [CrossRef]
- Mattson, J.; Depcik, C. Availability Analysis of Alternative Fuels for Compression Ignition Engine Combustion. In Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) IV, Cluj-Napoca, Romania, 17–19 October 2018; Springer Nature: Cham, Switzerland, 2019. Available online: https://link.springer.com/book/10.1007/978-3-319-94409-8#about-this-book (accessed on 13 July 2023).
- Mohebbi, M.; Reyhanian, M.; Ghofrani, I.; Aziz, A.A.; Hosseini, V. Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1501–1515. [Google Scholar] [CrossRef]
- Mamalis, S.; Babajimopoulos, A.; Assanis, D.; Borgnakke, C. A modeling framework for second law analysis of low-temperature combustion engines. Int. J. Engine Res. 2014, 15, 641–653. [Google Scholar] [CrossRef]
- Li, Y.; Jia, M.; Kokjohn, S.L.; Chang, Y.; Reitz, R.D. Comprehensive analysis of exergy destruction sources in different engine combustion regimes. Energy 2018, 149, 697–708. [Google Scholar] [CrossRef]
- Mahabadipour, H.; Srinivasan, K.K.; Krishnan, S.R. A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion. Appl. Energy 2017, 202, 199–212. [Google Scholar] [CrossRef]
- Mahabadipour, H.; Srinivasan, K.K.; Krishnan, S.R. An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion. Appl. Energy 2019, 256, 113952. [Google Scholar] [CrossRef]
- Xu, G.; Jia, M.; Li, Y.; Xie, M.; Su, W. Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range:(II) Detailed parametric, energy, and exergy analysis. Energy 2017, 139, 247–261. [Google Scholar] [CrossRef]
- Liu, D.; Wang, H.; Liu, H.; Zhang, Y.; Zhao, X.; Zhao, Y.; Yao, M. Theoretical analysis on the exergy destruction mechanisms and reduction under LTC relevant conditions. Proc. Combust. Inst. 2019, 37, 4797–4804. [Google Scholar] [CrossRef]
- Shirvani, S.; Shirvani, S.; Reitz, R.; Salehi, F. Thermodynamic energy and exergy analysis of low-temperature combustion strategies. SAE Int. J. Engines 2021, 14, 345–368. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; Wiley-Interscience: Hoboken, NJ, USA, 1964; Available online: https://www.wiley.com/en-us/The+Molecular+Theory+of+Gases+and+Liquids-p-9780471400653 (accessed on 13 July 2023).
- Kuo, K.K. Principles of Combustion; Wiley-Interscience: Hoboken, NJ, USA, 1986. [Google Scholar]
- Knuiman, J.T.; Barneveld, P.A.; Besseling, N.A. On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems. J. Chem. Educ. 2012, 89, 968–972. [Google Scholar] [CrossRef]
- Bird, R.B. Transport phenomena. Appl. Mech. Rev. 2002, 55, R1–R4. [Google Scholar] [CrossRef]
- Pope, D.N.; Raghavan, V.; Gogos, G. Gas-phase entropy generation during transient methanol droplet combustion. Int. J. Therm. Sci. 2010, 49, 1288–1302. [Google Scholar] [CrossRef]
- Williams, F.A. Combustion Theory; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hassani, S. Mathematical Methods: For Students of Physics and Related Fields; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Zwillinger, D. CRC Standard Mathematical Tables and Formulas; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Sirignano, W.A. Fluid Dynamics and Transport of Droplets and Sprays; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Farouk, T.I.; Dryer, F.L. On the extinction characteristics of alcohol droplet combustion under microgravity conditions—A numerical study. Combust. Flame 2012, 159, 3208–3223. [Google Scholar] [CrossRef]
- Farouk, T.; Dryer, F. Microgravity droplet combustion: Effect of tethering fiber on burning rate and flame structure. Combust. Theory Model. 2011, 15, 487–515. [Google Scholar] [CrossRef]
- Depcik, C.; Loya, S. Dynamically incompressible flow. In Advanced Methods for Practical Applications in Fluid Mechanics; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/books/615 (accessed on 13 July 2023).
- Wu, Y.; Zhang, X.; Zhang, X. Simplified analysis of heat and mass transfer model in droplet evaporation process. Appl. Therm. Eng. 2016, 99, 938–943. [Google Scholar] [CrossRef]
- Renksizbulut, M.; Yuen, M. Numerical Study of Droplet Evaporation in a High-Temperature Stream. 1983. Available online: https://asmedigitalcollection.asme.org/heattransfer/article-abstract/105/2/389/414242/Numerical-Study-of-Droplet-Evaporation-in-a-High?redirectedFrom=fulltext (accessed on 13 July 2023).
- Cuoci, A.; Avedisian, C.T.; Brunson, J.D.; Guo, S.; Dalili, A.; Wang, Y.; Mehl, M.; Frassoldati, A.; Seshadri, K.; Dec, J.E. Simulating combustion of a seven-component surrogate for a gasoline/ethanol blend including soot formation and comparison with experiments. Fuel 2021, 288, 119451. [Google Scholar] [CrossRef]
- Guard, U.C. Chemical Hazard Response Information System (CHRIS)-Hazardous Chemical Data. Commandant Instruction 16465.12C. 1999. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/5208492 (accessed on 13 July 2023).
- Linstorm, P. NIST chemistry webbook, NIST standard reference database number 69. J. Phys. Chem. Ref. Data Monogr. 1998, 9, 1–1951. [Google Scholar]
- Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D. Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons. J. Res. Natl. Bur. Stand. 1945, 35, 219. [Google Scholar] [CrossRef]
- Nishida, K.; Takagi, T.; Kinoshita, S. Analysis of entropy generation and exergy loss during combustion. Proc. Combust. Inst. 2002, 29, 869–874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madani, S.; Depcik, C. Microgravity Spherical Droplet Evaporation and Entropy Effects. Entropy 2023, 25, 1232. https://doi.org/10.3390/e25081232
Madani S, Depcik C. Microgravity Spherical Droplet Evaporation and Entropy Effects. Entropy. 2023; 25(8):1232. https://doi.org/10.3390/e25081232
Chicago/Turabian StyleMadani, Seyedamirhossein, and Christopher Depcik. 2023. "Microgravity Spherical Droplet Evaporation and Entropy Effects" Entropy 25, no. 8: 1232. https://doi.org/10.3390/e25081232
APA StyleMadani, S., & Depcik, C. (2023). Microgravity Spherical Droplet Evaporation and Entropy Effects. Entropy, 25(8), 1232. https://doi.org/10.3390/e25081232