Quasi-Hyperbolically Symmetric γ-Metric
Abstract
:1. Introduction
- The gravitational force inside the region is repulsive.
- Test particles cannot reach the center.
- Test particles can cross the horizon outward but only along the axis.
2. The -Metric and Its Hyperbolic Version
3. Geodesics
4. Discussion and Conclusions
- 1.
- 2.
- Like in the hyperbolically symmetric case, the test particles never reach the center; however, in our case, the test particles radially directed to the center bounce back farther from the center as increases. This result becomes intelligible from a simple inspection of (40).
- 3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera, L.; Witten, L. An alternative approach to the static spherically symmetric vacuum global solutions to the Einstein’s equations. Adv. High Energy Phys. 2018, 2018, 3839103. [Google Scholar]
- Rosen, N. The nature of the Schwarzschild singularity. In Relativity; Carmeli, M., Fickler, S.I., Witten, L., Eds.; Plenum Press: New York, NY, USA, 1970; pp. 229–258. [Google Scholar]
- Caroll, S. Spacetime and Geometry: An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004; p. 246. [Google Scholar]
- Rindler, W. Relativity: Special, General and Cosmological; Oxford University Press: New York, NY, USA, 2001; pp. 260–261. [Google Scholar]
- Harrison, B.K. Exact Three–Variable Solutions of the Field Equations of General Relativity. Phys. Rev. 1959, 116, 1285. [Google Scholar] [CrossRef]
- Ellis, G. Dynamics of Pressure–Free Matter in General Relativity. J. Math. Phys. 1967, 8, 1171. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Honselaers, C.; Herlt, E. Exact Solutions to Einsteins Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. D 2006, 15, 1387–1399. [Google Scholar] [CrossRef]
- Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010, 82, 027301. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Yu, S. Verno. Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef]
- Madler, T. On the affine-null metric formulation of General Relativity. Phys. Rev. D 2019, 99, 104048. [Google Scholar] [CrossRef]
- Maciel, A.; Delliou, M.L.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum Gravity 2020, 37, 125005. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Witten, L. Geodesics of the hyperbolically symmetric black hole. Phys. Rev. D 2020, 101, 064071. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Hyperbolically symmetric sources in Palatini f(R) gravity. Eur. Phys. J. C 2021, 81, 1070. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of hyperbolically symmetric fluids. Symmetry 2021, 13, 1568. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric versions of Lemaitre–Tolman–Bondi spacetimes. Entropy 2021, 23, 1219. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Influence of electromagnetic field on hyperbolically symmetric source. Eur. Phys. J. 2021, 136, 857. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Yousaf, Z.; Hanif, S. Hyperbolically symmetric sources, a comprehensive study in f(T) gravity. Eur. Phys. J. 2022, 137, 65. [Google Scholar] [CrossRef]
- Lim, Y. Motion of charged particles in spacetimes with magnetic fields of spherical and hyperbolic symmetry. Phys. Rev. D 2022, 106, 064023. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Khlopov, M.; Asad, H. A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity. Entropy 2022, 24, 150. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Asad, H. Hyperbolically symmetric sources in f(R,T) gravity. Ann. Phys. 2022, 437, 168753. [Google Scholar] [CrossRef]
- Yousaf, Z.; Nashed, G.; Bhatti, M.; Asad, H. Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids. Universe 2022, 8, 337. [Google Scholar] [CrossRef]
- Yousaf, Z. Spatially Hyperbolic Gravitating Sources in Λ-Dominated Era. Universe 2022, 8, 131. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Yousaf, Z.; Hanif, S. Electromagnetic influence on hyperbolically symmetric sources in f(T) gravity. Eur. Phys. J. C 2022, 82, 340. [Google Scholar] [CrossRef]
- Zipoy, D.M. Topology of Some Spheroidal Metrics. J. Math. Phys. 1966, 7, 1137–1143. [Google Scholar] [CrossRef]
- Vorhees, B. Static Axially Symmetric Gravitational Fields. Phys. Rev. D 1970, 2, 2119. [Google Scholar] [CrossRef]
- Espósito, F.; Witten, L. On a static axisymmetric solution of the Einstein equations. Phys. Lett. B 1975, 58, 357–360. [Google Scholar] [CrossRef]
- Duncan, C.; Esposito, F.; Lee, S. Effects of naked singularities: Particle orbits near a two-parameter family of naked singularity solutions. Phys. Rev. D 1978, 17, 404. [Google Scholar] [CrossRef]
- Herrera, L.; Paiva, F.; Santos, N.O. Geodesics in the γ spacetime. Int. J. Mod. Phys. D 2000, 9, 49. [Google Scholar] [CrossRef]
- Bonnor, W.B. Proceedings of the 3rd Canadian Conference on General Relativity and Relativistic Astrophysics; Coley, A., Cooperstock, F.I., Tupper, B., Eds.; World Scientific Publishing Co.: Singapore, 1990; p. 216. [Google Scholar]
- Herrera, L.; Paiva, F.M.; Santos, N.O. The Levi-Civita spacetime as a limiting case of the γ spacetime. J. Math. Phys. 1999, 40, 4064–4071. [Google Scholar] [CrossRef]
- Richterek, L.; Novotny, J.; Horsky, J. Einstein-Maxwell Fields Generated from the γ Metric and Their Limits. Czech. J. Phys. 2002, 52, 1021–1040. [Google Scholar] [CrossRef]
- Chowdhury, A.; Patil, M.; Malafarina, D.; Joshi, P. Circular geodesics and accretion disks in the Janis-Newman-Winicour and gamma metric spacetimes. Phys. Rev. D 2012, 85, 104031. [Google Scholar] [CrossRef]
- Abdikamalov, A.; Abdujabbarov, A.; Ayzenberg, D.; Malafarina, D.; Bambi, C.; Ahmedov, B. Black hole mimicker hiding in the shadow: Optical properties of the γ metric. Phys. Rev. D 2019, 100, 024014. [Google Scholar] [CrossRef]
- Alvear Terrero, D.; Hernandez Mederos, V.; Lopez Perez, S.; Manreza Paret, D.; Perez Martinez, A.; Quintero Angulo, G. Modeling anisotropic magnetized white dwarfs with γ metric. Phys. Rev. D 2019, 99, 02301. [Google Scholar]
- Toshmatov, B.; Malafarina, D.; Dadhich, N. Harmonic oscillations of neutral particles in the γ metric. Phys. Rev. D 2019, 100, 044001. [Google Scholar] [CrossRef]
- Toshmatov, B.; Malafarina, D. Spinning test particles in the γ spacetime. Phys. Rev. D 2019, 100, 104052. [Google Scholar] [CrossRef]
- Benavides Gallego, C.; Abdujabbarov, A.; Malafarina, D.; Ahmedov, B.; Bambi, C. Charged particle motion and electromagnetic field in γ spacetime. Phys. Rev. D 2019, 99, 044012. [Google Scholar] [CrossRef]
- Capistrano, A.; Zeidel, P.; Cabral, L. Effective apsidal precession from a monopole solution in a Zipoy spacetime. Eur. Phys. J. C 2019, 79, 730. [Google Scholar]
- Benavides Gallego, C.; Abdujabbarov, A.; Malafarina, D.; Bambi, C. Quasiharmonic oscillations of charged particles in static axially symmetric space-times immersed in a uniform magnetic field. Phys. Rev. D 2020, 101, 124024. [Google Scholar] [CrossRef]
- Narziloev, B.; Malafarina, D.; Abdujabbaraov, A.; Bambi, C. On the properties of a deformed extension of the NUT space-time. Eur. Phys. J. C 2020, 80, 784. [Google Scholar] [CrossRef]
- Hu, A.-R.; Huang, G.-Q. Dynamics of charged particles in the magnetized γ space–time. Eur. Phys. J. 2021, 136, 1210. [Google Scholar]
- Turimov, B.; Ahmedov, B. Zipoy-Voorhees Gravitational Object as a Source of High-Energy Relativistic Particles. Galaxies 2021, 9, 59. [Google Scholar] [CrossRef]
- Malafarina, D.; Sagynbayeva, S. What a difference a quadrupole makes? Gen. Relativ. Gravit. 2021, 53, 112. [Google Scholar] [CrossRef]
- Memmen, J.; Perlick, V. Geometrically thick tori around compact objects with a quadrupole moment. Class. Quantum Gravit. 2021, 38, 135002. [Google Scholar] [CrossRef]
- Narzilloev, B.; Malafarina, D.; Abdujabbarov, A.; Ahmedov, B.; Bambi, C. Particle motion around a static axially symmetric wormhole. Phys. Rev. D 2021, 104, 064016. [Google Scholar] [CrossRef]
- Chakrabarty, H.; Borah, D.; Abdujabbarov, A.; Malafarina, D.; Ahmedov, B. Effects of gravitational lensing on neutrino oscillation in γ spacetime. Eur. Phys. J. C 2022, 82, 24. [Google Scholar] [CrossRef]
- Ajibarat, A.; Mirza, B.; Azizallahi, A. γ Metrics in higher dimensions. Nucl. Phys. B 2022, 978, 115739. [Google Scholar] [CrossRef]
- Shaikh, R.; Paul, S.; Banerjejee, P.; Sarkar, T. Shadows and thin accretion disk images of the γ -metric. Eur. Phys. J. C 2022, 82, 696. [Google Scholar] [CrossRef]
- Gurtug, O.; Halilsoy, M.; Mangut, M. The charged Zipoy-Voorhees metric with astrophysical applications. Eur. Phys. J. C 2022, 82, 671. [Google Scholar] [CrossRef]
- Li, S.; Mirzaev, T.; Abdujabbarov, A.; Malafarina, D.; Ahmedov, B.; Han, W.-B. Constraining the deformation of a rotating black hole mimicker from its shadow. Phys. Rev. D 2022, 106, 08041. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration. First Sagittarius A Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Psaltis, D. Testing general relativity with the Event Horizon Telescope. Gen. Relativ. Gravit. 2019, 51, 137. [Google Scholar] [CrossRef]
- Gralla, S.E. Can the EHT M87 results be used to test general relativity? Phys. Rev. D 2021, 103, 024023. [Google Scholar] [CrossRef]
- Glampedakis, K.; Pappas, G. Can supermassive black hole shadows test the Kerr metric? Phys. Rev. D 2021, 104, L081503. [Google Scholar] [CrossRef]
- Ghasemi-Nodehi, M.; Azreg-Ainou, M.; Jusufi, K.; Jamil, M. Shadow, quasinormal modes, and quasiperiodic oscillations of rotating Kaluza-Klein black holes. Phys. Rev. D 2020, 102, 104032. [Google Scholar] [CrossRef]
- Jusufi, K.; Azreg-Ainou, M.; Jamil, M.; Wei, S.W.; Wu, Q.; Wang, A. Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled Einstein-Yang-Mills theory. Phys. Rev. D 2021, 103, 024013. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, T.; Wu, Q.; Jusufi, K.; Jamil, M.; Azreg-Ainou, M.; Wang, A. Shadow and quasinormal modes of a rotating loop quantum black hole. Phys. Rev. D 2020, 101, 084001. [Google Scholar] [CrossRef]
- Jusufi, K.; Jamil, M.; Chakrabarty, H.; Wu, Q.; Bambi, C.; Wang, A. Rotating regular black holes in conformal massive gravity. Phys. Rev. D 2020, 101, 044035. [Google Scholar] [CrossRef]
- Afrin, M.; Kumar, R.; Ghosh, S.G. Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87. Mon. Not. R. Astron. Soc. 2021, 504, 5927. [Google Scholar] [CrossRef]
- Volkov, M.S. Self-accelerating cosmologies and hairy black holes in ghost-free bigravity and massive gravity. Class. Quantum Gravity 2013, 30, 184009. [Google Scholar] [CrossRef]
- Benkel, R.; Sotiriou, T.P.; Witek, H. Black hole hair formation in shift-symmetric generalised scalar-tensor gravity. Class. Quantum Gravity 2017, 34, 064001. [Google Scholar] [CrossRef]
- Cardoso, V.; Gualtieri, L. Testing the black hole “no-hair” hypothesis. Class. Quantum Gravity 2016, 33, 174001. [Google Scholar] [CrossRef]
- Kurmanov, E.; Boshkayev, K.; Giambo, R.; Konysbayev, T.; Luongo, O.; Malafarina, D.; Quevedo, H. Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Anisotropic Pressure. Astrophys. J. 2022, 925, 210. [Google Scholar] [CrossRef]
- Boshkayev, K.; Konysbayev, T.; Kurmanov, E.; Luongo, O.; Malafarina, D.; Mutalipova, K.; Zhumakhanova, G. Effects of non-vanishing dark matter pressure in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 2021, 508, 1543. [Google Scholar] [CrossRef]
- Boshkayev, K.; Idrissov, A.; Luongo, O.; Malafarina, D. Accretion disc luminosity for black holes surrounded by dark matter. Mon. Not. R. Astron. Soc. 2020, 496, 1115. [Google Scholar] [CrossRef]
- Israel, W. Event Horizons in Static Vacuum Space-Times. Phys. Rev. 1967, 164, 1776. [Google Scholar] [CrossRef]
- Blandford, R.D.; Rees, M.J. A “Twin-Exhaust” Model for Double Radio Sources. Mon. Not. R. Astron. Soc. 1974, 169, 395. [Google Scholar] [CrossRef]
- Margon, B.A. Observations of SS 433. Annu. Rev. Astr. Astrophys. 1984, 22, 507. [Google Scholar] [CrossRef]
- Sams, B.J.; Eckart, A.; Sunyaev, R. Near-infrared jets in the Galactic microquasar GRS1915+105. Nature 1996, 382, 47–49. [Google Scholar] [CrossRef]
- Blandford, R.D. AGN Jets. Astr. Soc. Pacif. Conf. Ser. 2003, 290, 267. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J. Quasi-Hyperbolically Symmetric γ-Metric. Entropy 2023, 25, 1338. https://doi.org/10.3390/e25091338
Herrera L, Di Prisco A, Ospino J, Carot J. Quasi-Hyperbolically Symmetric γ-Metric. Entropy. 2023; 25(9):1338. https://doi.org/10.3390/e25091338
Chicago/Turabian StyleHerrera, Luis, Alicia Di Prisco, Justo Ospino, and Jaume Carot. 2023. "Quasi-Hyperbolically Symmetric γ-Metric" Entropy 25, no. 9: 1338. https://doi.org/10.3390/e25091338
APA StyleHerrera, L., Di Prisco, A., Ospino, J., & Carot, J. (2023). Quasi-Hyperbolically Symmetric γ-Metric. Entropy, 25(9), 1338. https://doi.org/10.3390/e25091338