News Waves: Hard News, Soft News, Fake News, Rumors, News Wavetrains
Abstract
:1. Introduction
2. The SIR Model of Epidemics as a Model for Spread of News
3. Discussion of the Obtained Exact Analytical Solutions of the Studied Chain of Equations
4. Characteristics of the News Waves Based on the Solutions (16) and (11)
4.1.
- One is present for a long time in the information part of the mind of the population and a possibility for significant influence of this mind occurs.
- At the same time, one can affect a larger and larger part of this population.
4.2.
4.3. The Solution (11)
5. Discussion
- The organization of the process of initiation of a news wave is important because the amplitude and the time horizon of the news wave depend on the initial number of individuals which start to spread the corresponding piece of news. If one wants to have a news wave which possess a larger peak coming early in the time after the beginning of the wave, then, one has to organize a larger number of individuals which start to spread the piece of news. If one wants a larger time horizon, then must be smaller. However, this will lead to a news wave of smaller amplitude, i.e., the number of individuals affected by the news wave will be smaller.
- Let us consider two cases of a region or a country. In the second case, the region or the country has a larger population in comparison to the first case. However, in both cases, the values of the parameters and remain the same. In a region or country with a larger population, the amplitude of the news wave will be larger and the time horizon will be longer in comparison to a region or country of a smaller population. Thus, the time of “life” of a piece of news in a large (with respect to population) city or region or country is expected to be longer than the time of “life” of the same piece of news in a town, region, or country of smaller population (but having the same values of and ).
- The transmission rate strongly influences the amplitude and the time horizon of the new wave. Thus, in order to achieve a news wave of larger amplitude (more affected individuals by the piece of news), one has to ensure a larger transmission rate (the corresponding population must be made more susceptible to the corresponding kind of news). However, the larger transmission rate also leads to a shorter time horizon. In other words, the news wave of larger amplitude moves faster through the population because of the higher permeability due to the larger transmission rate.
- The increase of the recovery rate leads to a wave of smaller amplitude and larger time horizon. Thus, if one wants to achieve a news wave of larger amplitude, the recovery rate must be lowered. The appropriate selection of the recovery rate can fix the position of the peak of the news wave.
- One can construct wave trains of news waves by using pieces of news with similar content. In such a case, one can use the number of individuals who spread the piece of news at a given time as the population of news spreaders who start to spread the next and slightly different piece of news. The wavetrains can be of three kinds. The news wavetrain which could be of interest to advertising or propaganda is the increasing news wavetrain which allows to affect the population of individuals whose number increases in time.
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Several Remarks about the Simple Equations Method (SEsM)
Appendix B. Several Exact Solutions of the Chain of Equations
References
- Zimdars, M.; McLeod, K. (Eds.) Fake News. Understanding Media and Misinformation in the Digital Age; The MIT Press: Cambridge, MA, USA, 2020; ISBN 978-0-2625-3836-7. [Google Scholar]
- Currie, S. Sharing Posts. The Spread of Fake News; Reference Point Press: San Diego, CA, USA, 2017; ISBN 978-1-6828-2297-5. [Google Scholar]
- Aral, S. The Hype Machine; Random House: New York, NY, USA, 2020; ISBN 978-0-5255-7452-1. [Google Scholar]
- Byford, J. Conspiracy Theories: A Critical Introduction; Palgrave MacMillan: London, UK, 2011; ISBN 978-1-349-32350-0. [Google Scholar]
- Douglas, K.M.; Sutton, R.M. What are Conspiracy Theories? A Definitional Approach to their Correlates, Consequences, and Communication. Annu. Rev. Psychol. 2023, 74, 271–298. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.M.; Uscinski, J.E.; Seelig, M.I.; Klofstad, C.A.; Wuchty, S.; Funchion, J.R.; Murthi, M.N.; Premaratne, K.; Stoler, J. The Relationship between Social Media use and Beliefs in Conspiracy Theories and Misinformation. Political Behav. 2021, 45, 781–804. [Google Scholar] [CrossRef] [PubMed]
- Douglas, K.M.; Uscinski, J.E.; Sutton, R.M.; Cichocka, A.; Nefes, T.; Ang, C.S.; Deravi, F. Understanding Conspiracy Theories. Political Psychol. 2019, 40, 3–35. [Google Scholar] [CrossRef]
- Sunstein, C. Echo Chambers; Princeton University Press: Princeton, NJ, USA, 2001; ISBN 978-1-400-80905-9. [Google Scholar]
- Garrett, R.K. Echo chambers online? Politically motivated selective exposure among Internet news users. J. Comput.-Mediat. Commun. 2009, 14, 265–285. [Google Scholar] [CrossRef]
- Barbera, P.; Jost, J.T.; Nagler, J.; Tucker, J.A.; Bonneau, R. Tweeting from Left to Right: Is Online Political Communication More Than an Echo Chamber? Psychol. Sci. 2015, 26, 1531–1542. [Google Scholar] [CrossRef]
- Flaxman, S.; Goel, S.; Rao, J.M. Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 2016, 80 (Suppl. 1), 298–320. [Google Scholar] [CrossRef]
- Cinelli, M.; De Francisci Morales, G.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The Echo Chamber Effect on Social Media. Proc. Natl. Acad. Sci. USA 2021, 118, e2023301118. [Google Scholar] [CrossRef]
- Choi, D.; Chun, S.; Oh, H.; Han, J.; Kwon, T.T. Rumor Propagation is Amplified by Echo Chambers in Social Media. Sci. Rep. 2020, 10, 310. [Google Scholar] [CrossRef]
- Zaller, J.R. The Nature and Origins of Mass Opinion; Cambridge University Press: Cambridge, UK, 1992; ISBN 978-0-511-81869-1. [Google Scholar]
- Allport, G.W. The Nature of Prejudice; Addison-Wesley: Reading, MA, USA, 1954; ISBN 0-201-00178-0. [Google Scholar]
- Benkler, Y.; Faris, R.; Roberts, H. Network Propaganda: Manipulation, Disinformation, and Radicalization in American Politics; Oxford University Press: Oxford, UK, 2018; ISBN 978-0-190-92363-1. [Google Scholar]
- Bakshy, E.; Messing, S.; Adamic, L.A. Exposure to ideologically diverse news and opinion on Facebook. Science 2015, 348, 1130–1132. [Google Scholar] [CrossRef]
- Barbera, P.; Wang, N.; Bonneau, R.; Jost, J.T.; Nagler, J.; Tucker, J.; Gonzalez-Bailon, S. The Critical Periphery in the Growth of Social Protests. PLoS ONE 2015, 10, e0143611. [Google Scholar] [CrossRef]
- Graber, D.A. Processing the News: How People Tame the Information Tide; University Press of America: Lanham, MD, USA, 1993; ISBN 978-0-819-19098-7. [Google Scholar]
- Del Vicario, M.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Eugene Stanley, H. The Spreading of Misinformation Online. Proc. Natl. Acad. Sci. USA 2016, 113, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Ecker, U.K.; Lewandowsky, S.; Cook, J.; Schmid, P.; Fazio, L.K.; Brashier, N.; Kendeu, P.; Vraga, E.K.; Amazeen, M.A. The Psychological Drivers of Misinformation Belief and its Resistance to Correction. Nat. Rev. Psychol. 2022, 1, 13–29. [Google Scholar] [CrossRef]
- Van Der Linden, S. Misinformation: Susceptibility, Spread, and Interventions to Immunize the Public. Nat. Med. 2022, 28, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the Impact of COVID-19 Vaccine Misinformation on vaccination Intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Apuke, O.D.; Omar, B. Fake News and COVID-19: Modelling the Predictors of Fake News Sharing Among Social Media Users. Telemat. Inform. 2021, 56, 101475. [Google Scholar] [CrossRef] [PubMed]
- Kaliyar, R.K.; Goswami, A.; Narang, P. FakeBERT: Fake News Detection in Social Media with a BERT-based Deep Learning Approach. Multimed. Tools Appl. 2021, 80, 11765–11788. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.; Quattrociocchi, W.; Galeazzi, A.; Valensise, C.M.; Brugnoli, E.; Schmidt, A.L.; Zola, P.; Zollo, F.; Scala, A. The COVID-19 Social Media Infodemic. Sci. Rep. 2020, 10, 16598. [Google Scholar] [CrossRef]
- West, J.D.; Bergstrom, C.T. Misinformation in and about Science. Proc. Natl. Acad. Sci. USA 2021, 118, e1912444117. [Google Scholar] [CrossRef]
- Laato, S.; Islam, A.N.; Islam, M.N.; Whelan, E. What Drives Unverified Information Sharing and Cyberchondria during the COVID-19 Pandemic? Eur. J. Inf. Syst. 2020, 29, 288–305. [Google Scholar] [CrossRef]
- Di Domenico, G.; Sit, J.; Ishizaka, A.; Nunan, D. Fake News, Social Media and Marketing: A Systematic Review. J. Bus. Res. 2021, 124, 329–341. [Google Scholar] [CrossRef]
- Freelon, D.; Wells, C. Disinformation as Political Communication. Political Commun. 2020, 37, 145–156. [Google Scholar] [CrossRef]
- Vosoughi, S.; Roy, D.; Aral, S. The Spread of True and False News Online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Zannettou, S.; Sirivianos, M.; Blackburn, J.; Kourtellis, N. The Web of False Information: Rumors, Fake News, Hoaxes, Clickbait, and various Other Shenanigans. J. Data Inf. Qual. 2019, 11, 10. [Google Scholar] [CrossRef]
- Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; Lazer, D. Fake News on Twitter during the 2016 US Presidential Election. Science 2019, 363, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Shahi, G.K.; Dirkson, A.; Majchrzak, T.A. An Exploratory Study of COVID-19 Misinformation on Twitter. Online Soc. Netw. Media 2021, 22, 100104. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, N.; Delfabbro, P.; Balzan, R. COVID-19-related Conspiracy Beliefs and their Relationship with Perceived Stress and Pre-existing Conspiracy Beliefs. Personal. Individ. Differ. 2020, 166, 110201. [Google Scholar] [CrossRef] [PubMed]
- Melki, J.; Tamim, H.; Hadid, D.; Makki, M.; El Amine, J.; Hitti, E. Mitigating Infodemics: The Relationship between News Exposure and Trust and Belief in COVID-19 Fake News and Social Media Spreading. PLoS ONE 2021, 16, e0252830. [Google Scholar] [CrossRef]
- Prieto Curiel, R.; Gonzalez Ramirez, H. Vaccination Strategies Against COVID-19 and the Diffusion of Anti-vaccination Views. Sci. Rep. 2021, 11, 6626. [Google Scholar] [CrossRef]
- Verma, G.; Bhardwaj, A.; Aledavood, T.; De Choudhury, M.; Kumar, S. Examining the Impact of Sharing COVID-19 Misinformation Online on Mental Health. Sci. Rep. 2022, 12, 8045. [Google Scholar] [CrossRef]
- Zhou, C.; Xiu, H.; Wang, Y.; Yu, X. Characterizing the Dissemination of Misinformation on Social Media in Health emergencies: An empirical Study Based on COVID-19. Inf. Process. Manag. 2021, 58, 102554. [Google Scholar] [CrossRef]
- Zhu, B.; Zheng, X.; Liu, H.; Li, J.; Wang, P. Analysis of Spatiotemporal Characteristics of Big Data on Social Media Sentiment with COVID-19 Epidemic Topics. Chaos Solitons Fractals 2020, 140, 110123. [Google Scholar] [CrossRef] [PubMed]
- Dow, B.J.; Johnson, A.L.; Wang, C.S.; Whitson, J.; Menon, T. The COVID-19 Pandemic and the Search for Structure: Social Media and Conspiracy Theories. Soc. Personal. Psychol. Compass 2021, 15, e12636. [Google Scholar] [CrossRef] [PubMed]
- Brauer, F.; Castillo-Chavez, C.; Feng, Z. Mathematcal Models in Epidemiology; Springer: New York, NY, USA, 2019; ISBN 978-1-4939-9828-9. [Google Scholar]
- Diekmann, O.; Heesterbeek, H.; Britton, T. Mathematical Tools for Understanding Infectious Disease Dynamics; Princeton University Press: Princeton, NJ, USA, 2012; ISBN 978-0-6911-5539-5. [Google Scholar]
- Martcheva, M. An Introduction to Mathematical Epidemiology; Springer: New York, NY, USA, 2015; ISBN 978-14899-7612-3. [Google Scholar]
- Li, M.I. An Introduction to Mathematical Modeling of Infectious Diseases; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-72122-4. [Google Scholar] [CrossRef]
- Brauer, F. Mathematical Epidemiology: Past, Present and Future. Infect. Dis. Model. 2017, 2, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Britton, T. Stochastic Epidemic Models: A Survey. Math. Biosci. 2010, 225, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Hethcote, H.W. A Thousand and One Epidemic Models. In Frontiers in Mathematical Biology; Levin, S.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 504–515. ISBN 978-3-642-50126-5. [Google Scholar]
- Keeling, M.J.; Eames, K.T. Networks and Epidemic Models. J. R. Soc. Interface 2005, 2, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Capasso, V.; Serio, G. A Generalization of the Kermack- McKendrick Deterministic Epidemic Model. Math. Biosci. 1978, 42, 43–61. [Google Scholar] [CrossRef]
- Teng, P.S. A Comparison of Simulation Approaches to Epidemic Modeling. Annu. Rev. Phytopathol. 1985, 23, 351–379. [Google Scholar] [CrossRef]
- Hethcote, H.W. The Mathematics of Infectious Diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef]
- Wang, W.; Tang, M.; Stanley, H.E.; Braunstein, L.A. Unification of Theoretical Approaches for Epidemic Spreading on Complex Networks. Rep. Prog. Phys. 2017, 80, 036603. [Google Scholar] [CrossRef]
- Frank, T.D. COVID-19 Epidemiology and Virus Dynamics; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-97178-6. [Google Scholar]
- Vitanov, N.K. Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-41629-8. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Vitanov, K.N. Epidemic Waves and Exact Solutions of a Sequence of Nonlinear Differential Equations Connected to the SIR Model of Epidemics. Entropy 2023, 25, 438. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Giordano, G.; Mottola, S.; Paternoster, B. Stiffness Analysis to Predict the Spread Out of Fake Information. Future Internet 2021, 13, 222. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Zhang, Q.; Yau, S.-T. The Dynamical Model for COVID-19 with Asymptotic Analysis and Numerical Implementations. Appl. Math. Model. 2021, 89, 1965–1982. [Google Scholar] [CrossRef] [PubMed]
- Prodanov, D. Comments on Some Analytical and Numerical Aspects of the SIR Model. Appl. Math. Model. 2021, 95, 236–243. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Computation of the Exact Forms of Waves for a Set of Differential Equations Associated with the SEIR Model of Epidemics. Computation 2023, 11, 129. [Google Scholar] [CrossRef]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models, and Simulation; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-32460-4. [Google Scholar]
- Chian, A.C.-L. Complex Systems Approach to Economic Dynamics; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-39752-6. [Google Scholar]
- Latora, V.; Nicosia, V.; Russo, G. Complex Networks. Principles, Methods, and Applications; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-10318-4. [Google Scholar]
- May, R.M.; Levin, S.A.; Sugihara, G. Complex Systems: Ecology for Bankers. Nature 2008, 451, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Ausloos, M. Application of the Detrended Fluctuation Analysis (DFA) Method for Describing Cloud Breaking. Phys. A 1999, 274, 349–354. [Google Scholar] [CrossRef]
- Kutner, R.; Ausloos, M.; Grech, D.; Di Matteo, T.; Schinckus, C.; Stanley, H.E. Manifesto for a Post-Pandemic Modeling. Phys. A 2019, 516, 240–253. [Google Scholar] [CrossRef]
- Drazin, P.G. Nonlinear Systems; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-40489-4. [Google Scholar]
- Kawasaki, K.; Ohta, T. Kink Dynamics in One-Dimensional Nonlinear Systems. Phys. Stat. Mech. Its Appl. 1982, 116, 573–593. [Google Scholar] [CrossRef]
- Ganji, D.D.; Sabzehmeidani, Y.; Sedighiamiri, A. Nonlinear Systems in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812024-8. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0511755798. [Google Scholar]
- Mills, T. Applied Time Series Analysis; Academic Press: London, UK, 2019; ISBN 978-012-813117-6. [Google Scholar]
- Verhulst, F. Nonlinear Differential Equations and Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-60934-6. [Google Scholar]
- Brezis, H.; Browder, F. Partial Differential Equations in the 20th Century. Adv. Math. 1998, 135, 76–144. [Google Scholar] [CrossRef]
- Ablowitz, M.J. Nonlinear Evolution Equations-Continuous and Discrete. SIAM Rev. 1977, 19, 663–684. [Google Scholar] [CrossRef]
- Camassa, R.; Hyman, J.M.; Luce, B.P. Nonlinear Waves and Solitons in Physical Systems. Phys. D Nonlinear Phenom. 1998, 123, 1–20. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1999; ISBN 0-471-35942-4. [Google Scholar]
- Tanaka, M. Physics of Nonlinear Waves; Morgan & Claypool: London, UK, 2020; ISBN 978-1681737140. [Google Scholar]
- Kruskal, M. Nonlinear Wave Equations. In Dynamical Systems, Theory and Applications; Moser, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 310–354. [Google Scholar] [CrossRef]
- Struble, R. Nonlinear Differential Equations; Dover: New York, NY, USA, 2018; ISBN 978-0486817545. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0511623998. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-521-83660-3. [Google Scholar]
- Kudryashov, N.A. Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Loguinova, N.B. Extended Simplest Equation Method for Nonlinear Differential Equations. Appl. Math. Comput. 2008, 205, 361–365. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods. Entropy 2021, 23, 10. [Google Scholar] [CrossRef]
- Vitanov, N.K. Recent Developments of the Methodology of the Modified Method of Simplest Equation with Application. Pliska Stud. Math. Bulg. 2019, 30, 29–42. [Google Scholar]
- Vitanov, N.K. Modified Method of Simplest Equation for Obtaining Exact Solutions of Nonlinear Partial Differential Equations: History, recent development and studied classes of equations. J. Theor. Appl. Mech. 2019, 49, 107–122. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM) and Nonlinear PDEs with Fractional Derivatives. AIP Conf. Ser. 2022, 2459, 030040. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method and Non-linear Differential Equations with Non-polynomial Non-linearity. Entropy 2021, 23, 1624. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM): An Affective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations. Entropy 2022, 24, 1653. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Martinov, N.K. On the Solitary Waves in the Sine-Gordon Model of the Two- Dimensional Josephson Junction. Zeitschrift Physik B Condens. Matter 1996, 100, 129–135. [Google Scholar] [CrossRef]
- Vitanov, N.K. Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling-Wave Solutions for a Class of PDEs with Polynomial Nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2050–2060. [Google Scholar] [CrossRef]
- Vitanov, N.K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1176–1185. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions of Nonlinear Partial Differential Equations: Further Development of the Methodology with Applications. Appl. Math. Comput. 2015, 269, 363–378. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation. J. Theor. Appl. Mech. 2018, 48, 59–68. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM) and Its Connection with the Inverse Scattering Transform Method. AIP Conf. Proc. 2021, 2321, 030035. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Vitanov, K.N. Population Dynamics in Presence of State Dependent Fluctuations. Comput. Math. Appl. 2013, 68, 962–971. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method (SEsM) and Its Particular Cases: Hirota Method. AIP Conf. Proc. 2021, 2321, 030036. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. News Waves: Hard News, Soft News, Fake News, Rumors, News Wavetrains. Entropy 2024, 26, 5. https://doi.org/10.3390/e26010005
Vitanov NK, Dimitrova ZI, Vitanov KN. News Waves: Hard News, Soft News, Fake News, Rumors, News Wavetrains. Entropy. 2024; 26(1):5. https://doi.org/10.3390/e26010005
Chicago/Turabian StyleVitanov, Nikolay K., Zlatinka I. Dimitrova, and Kaloyan N. Vitanov. 2024. "News Waves: Hard News, Soft News, Fake News, Rumors, News Wavetrains" Entropy 26, no. 1: 5. https://doi.org/10.3390/e26010005
APA StyleVitanov, N. K., Dimitrova, Z. I., & Vitanov, K. N. (2024). News Waves: Hard News, Soft News, Fake News, Rumors, News Wavetrains. Entropy, 26(1), 5. https://doi.org/10.3390/e26010005