A Cross-Entropy Approach to the Domination Problem and Its Variants
Abstract
:1. Introduction
2. Preliminaries
Variations of the Domination Method
3. The Cross-Entropy Method
Algorithm 1 Cross-entropy method |
Input: Initial parameters N, M, , , and r Output: Minimum cardinality among the solutions found () Set initial uniform probability vector while , or was updated within the past r iterations, do Generate N solutions using Calculate the vector L of the scores for each solution Sort the solutions and select the best M solutions as the if , then end if Calculate using the and end while return |
3.1. Adapting the Cross-Entropy Method to the Domination Problem
Algorithm 2 Algorithm for generating a minimal dominating set given |
Input: Graph G, probability vector Output: A minimal dominating set (S) Phase 1: while S does not satisfy the relevant domination criteria for graph G, do Normalise . end while Phase 2: for all vertices , do end for while is not a zero vector, do Normalise if satisfies the relevant domination criteria for graph G, then end if end while return S |
3.2. Checking the Relevant Domination Criteria
4. Experimental Results
4.1. Comparison Heuristics
Algorithm 3 Greedy heuristic for finding a minimal dominating set |
Input: Graph G Output: A minimal dominating set (S) Phase 1: while S does not satisfy the relevant domination criteria for graph G, do the vertex such that is largest (breaking ties uniformly at random) end while Phase 2: for each vertex (considered in a random order), do if satisfies the relevant domination criteria for graph G, then end if end for return S |
4.2. Experimental Setup
4.3. Results
Instance | Domination | 2-Domination | Secure Domination | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GH | CE | Sol | Gap | GH | CE | Sol | Gap | GH | CE | Sol | Gap | |
random100_3 | 40 | 35 | 35 | 0 | 60 | 58 | 58 | 0 | 51 | 48 | 47 | 1 |
random100_4 | 32 | 29 | 28 | 1 | 51 | 48 | 48 | 0 | 42 | 41 | 39 | 2 |
random100_5 | 27 | 24 | 23 | 1 | 44 | 41 | 40 | 1 | 36 | 36 | 33 | 3 |
random100_6 | 23 | 21 | 19 | 2 | 39 | 35 | 33 | 2 | 32 | 31 | 28 | 3 |
random250_3 | 91 | 87 | 81 | 6 | 140 | 138 | 131 | 7 | 119 | 115 | 105 | 10 |
random250_4 | 79 | 73 | 65 | 8 | 123 | 117 | 108 | 9 | 106 | 102 | 90 | 12 |
random250_5 | 67 | 62 | 53 | 9 | 110 | 103 | 92 | 11 | 96 | 91 | - | - |
random250_6 | 61 | 56 | 46 | 10 | 97 | 92 | 81 | 11 | 82 | 82 | 11 | |
random500_3 | 177 | 168 | 148 | 20 | 283 | 274 | 255 | 19 | 236 | 234 | 209 | 25 |
random500_4 | 149 | 141 | 117 | 24 | 241 | 228 | 203 | 25 | 209 | 202 | 32 | |
random500_5 | 122 | 121 | 98 | 23 | 211 | 200 | 29 | 180 | 179 | 32 | ||
random500_6 | 111 | 108 | 84 | 24 | 190 | 180 | 29 | 168 | 162 | 28 | ||
random800_3 | 295 | 280 | 250 | 30 | 465 | 450 | 419 | 31 | 398 | 387 | 344 | 43 |
random800_4 | 250 | 234 | 195 | 39 | 395 | 383 | 339 | 44 | 345 | 336 | 54 | |
random800_5 | 214 | 207 | 163 | 44 | 355 | 339 | 49 | 309 | 299 | 50 | ||
random800_6 | 190 | 184 | 43 | 314 | 301 | 51 | 266 | 272 | 50 | |||
random1000_3 | 390 | 374 | 329 | 45 | 595 | 578 | 536 | 42 | 512 | 504 | 55 | |
random1000_4 | 320 | 310 | 256 | 54 | 511 | 495 | 438 | 57 | 437 | 434 | 67 | |
random1000_5 | 370 | 269 | 212 | 57 | 448 | 430 | 64 | 391 | 382 | 61 | ||
random1000_6 | 242 | 242 | 59 | 403 | 391 | 68 | 344 | 351 | 66 |
Instance | Domination | Total Domination | 2-Domination | Secure Domination | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GH | CE | Sol | Gap | GH | CE | Sol | Gap | GH | CE | Sol | Gap | GH | CE | Sol | Gap | |
adjnoun [29] | 18 | 18 | 18 | 0 | 20 | 19 | 19 | 0 | 42 | 39 | 38 | 1 | 35 | 32 | 31 | 1 |
anna [30] | 12 | 12 | 12 | 0 | 12 | 12 | 12 | 0 | 50 | 47 | 47 | 0 | 47 | 42 | 42 | 0 |
david [30] | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 27 | 26 | 26 | 0 | 24 | 24 | 24 | 0 |
dolphins [31] | 14 | 14 | 14 | 0 | 17 | 17 | 17 | 0 | 29 | 27 | 27 | 0 | 22 | 22 | 22 | 0 |
football [32] | 15 | 13 | 12 | 1 | 18 | 15 | 13 | 2 | 26 | 24 | 21 | 3 | 19 | 18 | 17 | 1 |
gplus_2000 [3] | 174 | 236 | 170 | 66 | 191 | 188 | 181 | 7 | 1062 | 1036 | 965 | 71 | 955 | 949 | - | - |
gplus_500 [3] | 42 | 42 | 42 | 0 | 48 | 45 | 45 | 0 | 315 | 303 | 297 | 6 | 284 | 274 | 267 | 7 |
homer [30] | 97 | 97 | 96 | 1 | ∞ | ∞ | ∞ | 329 | 323 | 317 | 6 | 303 | 294 | 282 | 12 | |
huck [30] | 9 | 9 | 9 | 0 | 11 | 11 | 11 | 0 | 21 | 21 | 21 | 0 | 15 | 15 | 15 | 0 |
lesmis [33] | 10 | 10 | 10 | 0 | 10 | 10 | 10 | 0 | 33 | 33 | 33 | 0 | 31 | 28 | 28 | 0 |
netscience [29] | 535 | 509 | 477 | 32 | ∞ | ∞ | ∞ | 954 | 933 | 915 | 18 | 657 | 643 | 623 | 20 | |
pokec_2000 [3] | 75 | 78 | 75 | 3 | 76 | 75 | 75 | 0 | 921 | 879 | 816 | 63 | 871 | 853 | - | - |
pokec_500 [3] | 16 | 16 | 16 | 0 | 16 | 16 | 16 | 0 | 280 | 266 | 264 | 2 | 270 | 257 | 251 | 6 |
polbooks [3] | 15 | 14 | 13 | 1 | 16 | 15 | 15 | 0 | 27 | 24 | 22 | 2 | 21 | 21 | 19 | 2 |
power [34] | 1584 | 1747 | 1481 | 266 | 1947 | 1932 | 1801 | 131 | 3047 | 3002 | 2795 | 207 | 2593 | 2575 | - | - |
zachary [35] | 4 | 4 | 4 | 0 | 4 | 4 | 4 | 0 | 12 | 12 | 12 | 0 | 9 | 9 | 9 | 0 |
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174. [Google Scholar]
- Dai, F.; Wu, J. An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 2004, 15, 908–920. [Google Scholar] [CrossRef]
- Chalupa, D. An order-based algorithm for minimum dominating set with application in graph mining. Inf. Sci. 2018, 426, 101–116. [Google Scholar] [CrossRef]
- Corcoran, P.; Gagarin, A. Heuristics for k-domination models of facility location problems in street networks. Comput. Oper. Res. 2021, 133, 105368. [Google Scholar] [CrossRef]
- Van Rooij, J.M.; Bodlaender, H.L. Exact algorithms for dominating set. Discret. Appl. Math. 2011, 159, 2147–2164. [Google Scholar] [CrossRef]
- Mira, F.A.H.; Inza, E.P.; Almira, J.M.S.; Vakhania, N. A polynomial-time approximation to a minimum dominating set in a graph. Theor. Comput. Sci. 2022, 930, 142–156. [Google Scholar] [CrossRef]
- Parekh, A.K. Analysis of a greedy heuristic for finding small dominating sets in graphs. Inf. Process. Lett. 1991, 39, 237–240. [Google Scholar] [CrossRef]
- Campan, A.; Truta, T.M.; Beckerich, M. Fast Dominating Set Algorithms for Social Networks. In Proceedings of the 26th Modern Artificial Intelligence and Cognitive Sciences Conference, Greensboro, NC, USA, 25–26 April 2015. [Google Scholar]
- Casado, A.; Bermudo, S.; López-Sánchez, A.; Sánchez-Oro, J. An iterated greedy algorithm for finding the minimum dominating set in graphs. Math. Comput. Simul. 2023, 207, 41–58. [Google Scholar] [CrossRef]
- Eubank, S.; Kumar, V.A.; Marathe, M.V.; Srinivasan, A.; Wang, N. Structural and algorithmic aspects of massive social networks. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 11–13 January 2004; pp. 718–727. [Google Scholar]
- Rubinstein, R.Y. Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 1997, 99, 89–112. [Google Scholar] [CrossRef]
- Rubinstein, R. The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1999, 1, 127–190. [Google Scholar] [CrossRef]
- De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar] [CrossRef]
- Eshragh, A.; Filar, J.A.; Haythorpe, M. A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem. Ann. Oper. Res. 2011, 189, 103–125. [Google Scholar] [CrossRef]
- Burger, A.; De Villiers, A.; Van Vuuren, J. A binary programming approach towards achieving effective graph protection. In Proceedings of the 2013 ORSSA Annual Conference, Stellenbosch, Western Cape, South Africa, 16–18 January 2013; pp. 19–30. [Google Scholar]
- Foerster, K.T. Approximating fault-tolerant domination in general graphs. In Proceedings of the 2013 Tenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), New Orleans, LA, USA, 6 January 2013; pp. 25–32. [Google Scholar]
- Chlebík, M.; Chlebíková, J. Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 2008, 206, 1264–1275. [Google Scholar] [CrossRef]
- Henning, M.A.; Yeo, A. Total Domination in Graphs; Springer Monographs in Mathematics, Springer: New York, NY, USA, 2013. [Google Scholar]
- Chellali, M.; Favaron, O.; Hansberg, A.; Volkmann, L. k-domination and k-independence in graphs: A survey. Graphs Comb. 2012, 28, 1–55. [Google Scholar] [CrossRef]
- Klostermeyer, W.F.; Mynhardt, C.M. Eternal and Secure Domination in Graphs. In Topics in Domination in Graphs; Developments in Mathematics, Springer: Cham, Switzerland, 2020; Volume 64. [Google Scholar]
- Burger, A.; De Villiers, A.; Van Vuuren, J. Two algorithms for secure graph domination. J. Comb. Math. Comb. Comput. 2013, 85, 321–339. [Google Scholar]
- Gonçalves, D.; Pinlou, A.; Rao, M.; Thomassé, S. The domination number of grids. SIAM J. Discret. Math. 2011, 25, 1443–1453. [Google Scholar] [CrossRef]
- Burdett, R.; Haythorpe, M. An improved binary programming formulation for the secure domination problem. Ann. Oper. Res. 2020, 295, 561–573. [Google Scholar] [CrossRef]
- Rao, M.; Talon, A. The 2-domination and Roman domination numbers of grid graphs. Discret. Math. Theor. Comput. Sci. 2019, 21, 53114746. [Google Scholar]
- Soltankhah, N. Results on total domination and total restrained domination in grid graphs. Int. Math. Forum 2010, 5, 319–332. [Google Scholar]
- Isaacs, R. Infinite families of nontrivial trivalent graphs which are not Tait colorable. Am. Math. Mon. 1975, 82, 221–239. [Google Scholar] [CrossRef]
- Burdett, R.; Haythorpe, M.; Newcombe, A. Variants of the domination number for flower snarks. Ars Math. Contemp. 2023, 24, P3.04. [Google Scholar] [CrossRef]
- Clark, B.N.; Colbourn, C.J.; Johnson, D.S. Unit disk graphs. Discret. Math. 1990, 86, 165–177. [Google Scholar] [CrossRef]
- Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.S.; Trick, M.A. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11–13, 1993; American Mathematical Society: Boston, MA, USA, 1996; Volume 26. [Google Scholar]
- Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations: Can geographic isolation explain this unique trait? Behav. Ecol. Sociobiol. 2003, 54, 396–405. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Knuth, D.E. The Stanford GraphBase: A Platform for Combinatorial Computing; ACM Press: New York, NY, USA, 1993; Volume 1. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef]
Instance | Domination | Total Domination | 2-Domination | Secure Domination | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GH | CE | Sol | Gap | GH | CE | Sol | Gap | GH | CE | Sol | Gap | GH | CE | Sol | Gap | |
UDG_100-0.7-10-10_17 | 21 | 19 | 19 | 0 | 25 | 24 | 24 | 0 | 36 | 35 | 34 | 1 | 28 | 27 | 26 | 1 |
UDG_100-0.7-10-10_32 | 19 | 18 | 18 | 0 | 26 | 25 | 25 | 0 | 37 | 35 | 34 | 1 | 28 | 27 | 27 | 0 |
UDG_100-0.7-10-10_43 | 21 | 20 | 20 | 0 | 31 | 28 | 27 | 1 | 40 | 38 | 36 | 2 | 27 | 28 | 27 | 1 |
UDG_100-0.7-10-10_55 | 21 | 20 | 20 | 0 | 26 | 24 | 24 | 0 | 39 | 36 | 36 | 0 | 27 | 27 | 27 | 0 |
UDG_100-0.7-10-10_73 | 22 | 20 | 20 | 0 | 30 | 27 | 26 | 1 | 39 | 38 | 36 | 2 | 29 | 28 | 27 | 1 |
UDG_500-0.4-10-10_0 | 69 | 65 | 55 | 10 | 86 | 85 | 71 | 14 | 129 | 125 | 106 | 19 | 97 | 94 | 81 | 13 |
UDG_500-0.4-10-10_1 | 68 | 66 | 55 | 11 | 86 | 85 | 72 | 13 | 127 | 124 | 104 | 20 | 97 | 96 | 82 | 14 |
UDG_500-0.5-10-10_0 | 47 | 44 | 37 | 7 | 60 | 58 | 46 | 12 | 88 | 85 | 71 | 14 | 68 | 67 | 9 | |
UDG_500-0.5-10-10_1 | 44 | 46 | 37 | 9 | 61 | 60 | 47 | 13 | 88 | 87 | 73 | 14 | 68 | 68 | 10 | |
UDG_800-0.3-10-10_0 | 119 | 118 | 99 | 19 | 159 | 154 | 124 | 30 | 222 | 217 | 183 | 34 | 165 | 166 | 25 | |
UDG_800-0.3-10-10_1 | 119 | 118 | 99 | 19 | 154 | 150 | 122 | 28 | 226 | 217 | 184 | 33 | 170 | 169 | 25 | |
UDG_800-0.5-10-10_0 | 51 | 48 | 39 | 9 | 62 | 63 | 16 | 97 | 94 | 20 | 75 | 74 | 5 | |||
UDG_800-0.5-10-10_1 | 51 | 49 | 39 | 10 | 66 | 63 | 15 | 97 | 95 | 19 | 76 | 75 | 6 | |||
UDG_1000-0.3-10-10_0 | 125 | 124 | 99 | 25 | 166 | 159 | 36 | 227 | 227 | 36 | 177 | 176 | 27 | |||
UDG_1000-0.3-10-10_1 | 126 | 121 | 99 | 22 | 165 | 155 | 34 | 234 | 229 | 29 | 180 | 177 | 25 | |||
UDG_1000-0.5-10-10_0 | 54 | 50 | 39 | 11 | 65 | 64 | 13 | 99 | 97 | 20 | 77 | 76 | 1 | |||
UDG_1000-0.5-10-10_1 | 54 | 52 | 39 | 13 | 69 | 64 | 14 | 96 | 98 | 22 | 81 | 77 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burdett, R.; Haythorpe, M.; Newcombe, A. A Cross-Entropy Approach to the Domination Problem and Its Variants. Entropy 2024, 26, 844. https://doi.org/10.3390/e26100844
Burdett R, Haythorpe M, Newcombe A. A Cross-Entropy Approach to the Domination Problem and Its Variants. Entropy. 2024; 26(10):844. https://doi.org/10.3390/e26100844
Chicago/Turabian StyleBurdett, Ryan, Michael Haythorpe, and Alex Newcombe. 2024. "A Cross-Entropy Approach to the Domination Problem and Its Variants" Entropy 26, no. 10: 844. https://doi.org/10.3390/e26100844
APA StyleBurdett, R., Haythorpe, M., & Newcombe, A. (2024). A Cross-Entropy Approach to the Domination Problem and Its Variants. Entropy, 26(10), 844. https://doi.org/10.3390/e26100844