W-Class States—Identification and Quantification of Bell-CHSH Inequalities’ Violation
Abstract
:1. Introduction
2. The Three-Qubit System
3. The Concurrence, Negativity, and Degree of Nonlocality
4. Linear Entropy and Degree of Nonlocality
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Bacciagaluppi, G.; Valentini, A. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Freedman, S.J.; Clauser, J.F. Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett. 1972, 28, 938–941. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91–94. [Google Scholar] [CrossRef]
- Weihs, G.; Jennewein, T.; Simon, C.; Weinfurter, H.; Zeilinger, A. Violation of Bell’s Inequality under Strict Einstein Locality Conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. [Google Scholar] [CrossRef]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.A.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.A.; Kielpinski, D.; Meyer, V.; Sackett, C.A.; Itano, W.M.; Monroe, C.; Wineland, D.J. Experimental violation of a Bell’s inequality with efficient detection. Nature 2001, 409, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 2007, 98, 140402. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.J.; Wiseman, H.M.; Doherty, A.C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 2007, 76, 052116. [Google Scholar] [CrossRef]
- Herbert, N. Cryptographic approach to hidden variables. Am. J. Phys. 1975, 43, 315–316. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Acín, A.; Gisin, N.; Masanes, L. From Bell’s Theorem to Secure Quantum Key Distribution. Phys. Rev. Lett. 2006, 97, 120405. [Google Scholar] [CrossRef] [PubMed]
- Acín, A.; Brunner, N.; Gisin, N.; Massar, S.; Pironio, S.; Scarani, V. Device-Independent Security of Quantum Cryptography against Collective Attacks. Phys. Rev. Lett. 2007, 98, 230501. [Google Scholar] [CrossRef] [PubMed]
- Acín, A.; Massar, S.; Pironio, S. Efficient quantum key distribution secure against no-signalling eavesdroppers. New J. Phys. 2006, 8, 126. [Google Scholar] [CrossRef]
- Bartkiewicz, K.; Lemr, K.; Černoch, A.; Miranowicz, A. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A 2017, 95, 030102. [Google Scholar] [CrossRef]
- Zopf, M.; Keil, R.; Chen, Y.; Yang, J.; Chen, D.; Ding, F.; Schmidt, O.G. Entanglement Swapping with Semiconductor-Generated Photons Violates Bell’s Inequality. Phys. Rev. Lett. 2019, 123, 160502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, H.; Knill, E. Efficient randomness certification by quantum probability estimation. Phys. Rev. Res. 2020, 2, 013016. [Google Scholar] [CrossRef] [PubMed]
- Li, S.B.; Xu, J.B. Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A 2005, 72, 022332. [Google Scholar] [CrossRef]
- Dilley, D.; Chitambar, E. More nonlocality with less entanglement in Clauser-Horne-Shimony-Holt experiments using inefficient detectors. Phys. Rev. A 2018, 97, 062313. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Wakui, K.; Fujiwara, M.; Hayasaka, K.; Miki, S.; Terai, H.; Sasaki, M.; Takeoka, M. Optimal conditions for the Bell test using spontaneous parametric down-conversion sources. Phys. Rev. A 2018, 98, 063842. [Google Scholar] [CrossRef]
- Friedman, A.S.; Guth, A.H.; Hall, M.J.W.; Kaiser, D.I.; Gallicchio, J. Relaxed Bell inequalities with arbitrary measurement dependence for each observer. Phys. Rev. A 2019, 99, 012121. [Google Scholar] [CrossRef]
- Faria, H.M.; Dechoum, K.; Khoury, A.Z. Bell inequality violation and operator ordering in quantum theory. Phys. Rev. A 2020, 102, 053714. [Google Scholar] [CrossRef]
- Brown, P.J.; Colbeck, R. Arbitrarily Many Independent Observers Can Share the Nonlocality of a Single Maximally Entangled Qubit Pair. Phys. Rev. Lett. 2020, 125, 090401. [Google Scholar] [CrossRef] [PubMed]
- Streiter, L.F.; Giacomini, F.; Brukner, i.c.v. Relativistic Bell Test within Quantum Reference Frames. Phys. Rev. Lett. 2021, 126, 230403. [Google Scholar] [CrossRef] [PubMed]
- Kitzinger, J.; Meng, X.; Fadel, M.; Ivannikov, V.; Nemoto, K.; Munro, W.J.; Byrnes, T. Bell correlations in a split two-mode-squeezed Bose-Einstein condensate. Phys. Rev. A 2021, 104, 043323. [Google Scholar] [CrossRef]
- Valcarce, X.; Zivy, J.; Sangouard, N.; Sekatski, P. Self-testing two-qubit maximally entangled states from generalized Clauser-Horne-Shimony-Holt tests. Phys. Rev. Res. 2022, 4, 013049. [Google Scholar] [CrossRef]
- Kim, J.S.; Sanders, B.C. Generalized W-class state and its monogamy relation. J. Phys. Math. Theor. 2008, 41, 495301. [Google Scholar] [CrossRef]
- Adhikari, S.; Gangopadhyay, S. A Study of the Efficiency of the Class of W-States as a Quantum Channel. Int. J. Theor. Phys. 2009, 48, 403–408. [Google Scholar] [CrossRef]
- Cui, W.; Chitambar, E.; Lo, H.K. Randomly distilling W-class states into general configurations of two-party entanglement. Phys. Rev. A 2011, 84, 052301. [Google Scholar] [CrossRef]
- Liang, Y.; Zheng, Z.J.; Zhu, C.J. Monogamy and polygamy for generalized W-class states using Rényi-α entropy. Phys. Rev. A 2020, 102, 062428. [Google Scholar] [CrossRef]
- Shi, X.; Chen, L. Monogamy relations for the generalized W-class states beyond qubits. Phys. Rev. A 2020, 101, 032344. [Google Scholar] [CrossRef]
- Jian, W.; Quan, Z.; Tao, C.-J. Quantum Secure Communication Scheme with W State. Commun. Theor. Phys. 2007, 48, 637–640. [Google Scholar] [CrossRef]
- Chen, X.B.; Wen, Q.Y.; Guo, F.Z.; Sun, Y.; Xu, G.; Zhu, F.C. Controlled quantum secure direct communication with W statee. Int. J. Quantum Inf. 2008, 6, 899–906. [Google Scholar] [CrossRef]
- Shi, B.S.; Tomita, A. Teleportation of an unknown state by W state. Phys. Lett. 2002, 296, 161–164. [Google Scholar] [CrossRef]
- Joo, J.; Park, Y.J. Comment on “Teleportation of an unknown state by W states”. Phys. Lett. 2002, 300, 324–326. [Google Scholar] [CrossRef]
- Shi, B.S.; Tomita, A. Reply to “Comment on: Teleportation of an unknown state by W state”. Phys. Lett. 2002, 300, 538–539. [Google Scholar] [CrossRef]
- Yang, X.; Bai, M.Q.; Mo, Z.W. Controlled Dense Coding with the W State. Int. J. Theor. Phys. 2017, 56, 3525–3533. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Wang, F.; Luo, M.X. Efficient Superdense Coding with W States. Int. J. Theor. Phys. 2018, 57, 1935–1941. [Google Scholar] [CrossRef]
- Roy, S.; Chanda, T.; Das, T.; Sen(De), A.; Sen, U. Deterministic quantum dense coding networks. Phys. Lett. 2018, 382, 1709–1715. [Google Scholar] [CrossRef]
- Acín, A.; Andrianov, A.; Jané, E.; Tarrach, R. Three-qubit pure-state canonical forms. J. Phys. Math. Gen. 2001, 34, 6725–6739. [Google Scholar] [CrossRef]
- Sabin, C.; Garcia-Alcaine, G. A classification of entanglement in three-qubit systems. Eur. Phys. J. D 2008, 48, 435–442. [Google Scholar] [CrossRef]
- Enríquez, M.; Delgado, F.; Życzkowski, K. Entanglement of Three-Qubit Random Pure States. Entropy 2018, 20, 745. [Google Scholar] [CrossRef] [PubMed]
- Kalaga, J.K.; Leoński, W. Quantum steering borders in three-qubit systems. Quantum Inf. Process. 2017, 16, 175. [Google Scholar] [CrossRef]
- Sun, W.Y.; Wang, D.; Fang, B.L.; Ding, Z.Y.; Yang, H.; Ming, F.; Ye, L. Intrinsic Relations of Bipartite Quantum Resources in Tripartite Systems. Ann. Phys. 2019, 531, 1800358. [Google Scholar] [CrossRef]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M. Violating Bell inequality by mixed spin-12 states: Necessary and sufficient condition. Phys. Lett. 1995, 200, 340–344. [Google Scholar] [CrossRef]
- Horodecki, R. Two-spin-12 mixtures and Bell’s inequalities. Phys. Lett. 1996, 210, 223–226. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A 1996, 223, 1–8. [Google Scholar] [CrossRef]
- Verstraete, F.; Audenaert, K.; Dehaene, J.; Moor, B.D. A comparison of the entanglement measures negativity and concurrence. J. Phys. A Math. Gen. 2001, 34, 10327. [Google Scholar] [CrossRef]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277–4281. [Google Scholar] [CrossRef]
- Ishizaka, S.; Hiroshima, T. Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 2000, 62, 022310. [Google Scholar] [CrossRef]
- Verstraete, F.; Wolf, M.M. Entanglement versus Bell Violations and Their Behavior under Local Filtering Operations. Phys. Rev. Lett. 2002, 89, 170401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaga, J.K.; Leoński, W.; Peřina, J., Jr. W-Class States—Identification and Quantification of Bell-CHSH Inequalities’ Violation. Entropy 2024, 26, 1107. https://doi.org/10.3390/e26121107
Kalaga JK, Leoński W, Peřina J Jr. W-Class States—Identification and Quantification of Bell-CHSH Inequalities’ Violation. Entropy. 2024; 26(12):1107. https://doi.org/10.3390/e26121107
Chicago/Turabian StyleKalaga, Joanna K., Wiesław Leoński, and Jan Peřina, Jr. 2024. "W-Class States—Identification and Quantification of Bell-CHSH Inequalities’ Violation" Entropy 26, no. 12: 1107. https://doi.org/10.3390/e26121107
APA StyleKalaga, J. K., Leoński, W., & Peřina, J., Jr. (2024). W-Class States—Identification and Quantification of Bell-CHSH Inequalities’ Violation. Entropy, 26(12), 1107. https://doi.org/10.3390/e26121107