Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment
Abstract
:1. Introduction
2. The Scheme of ACCQT Protocol
2.1. Construction of the Quantum Channel
2.2. Description of the Proposed Protocol
- Step 1. Define the holding of qubit information
3. Fidelity Calculation
3.1. Bit-Flip Noisy Channel
3.2. Phase-Flip Noisy Channel
3.3. Bit-Phase-Flip Noisy Channel
3.4. Depolarizing Noisy Channel
3.5. Comparison
4. Discussion and Analysis
4.1. Intrinsic Efficiency and Discussion
4.2. Security Analysis
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Alice’s Result | Bob’s Result | Charlie’s Result | David’s Result | Unitary Operation |
---|---|---|---|---|
|δ+⟩a1a2A4 | |ω+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗I⊗I⊗I⊗I⊗I Z⊗I⊗I⊗I⊗I⊗I⊗I |
|δ+⟩a1a2A4 | |ω+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗I⊗I⊗Z⊗I⊗I Z⊗I⊗I⊗I⊗Z⊗I⊗I |
|δ+⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗I⊗I⊗X⊗X⊗X Z⊗I⊗I⊗I⊗X⊗X⊗X |
|δ+⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗I⊗I⊗-iY⊗X⊗X Z⊗I⊗I⊗I⊗-iY⊗X⊗X |
|δ+⟩a1a2A4 | |ω−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗Z⊗I⊗I⊗I⊗I Z⊗I⊗Z⊗I⊗I⊗I⊗I |
|δ+⟩a1a2A4 | |ω−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗Z⊗I⊗Z⊗I⊗I Z⊗I⊗Z⊗I⊗Z⊗I⊗I |
|δ+⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗Z⊗I⊗X⊗X⊗X Z⊗I⊗Z⊗I⊗X⊗X⊗X |
|δ+⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗Z⊗I⊗-iY⊗X⊗X Z⊗I⊗Z⊗I⊗-iY⊗X⊗X |
|δ+⟩a1a2A4 | |μ+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗X⊗X⊗I⊗I⊗I Z⊗I⊗X⊗X⊗I⊗I⊗I |
|δ+⟩a1a2A4 | |μ+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗X⊗X⊗Z⊗I⊗I Z⊗I⊗X⊗X⊗Z⊗I⊗I |
|δ+⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗X⊗X⊗X⊗X⊗X Z⊗I⊗X⊗X⊗X⊗X⊗X |
|δ+⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗X⊗X⊗-iY⊗X⊗X Z⊗I⊗X⊗X⊗-iY⊗X⊗X |
|δ+⟩a1a2A4 | |μ−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗-iY⊗X⊗I⊗I⊗I Z⊗I⊗-iY⊗X⊗I⊗I⊗I |
|δ+⟩a1a2A4 | |μ−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗-iY⊗X⊗Z⊗I⊗I Z⊗I⊗-iY⊗X⊗Z⊗I⊗I |
|δ+⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗-iY⊗X⊗X⊗X⊗X Z⊗I⊗-iY⊗X⊗X⊗X⊗X |
|δ+⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | I⊗I⊗-iY⊗X⊗-iY⊗X⊗X Z⊗I⊗-iY⊗X⊗-iY⊗X⊗X |
|δ−⟩a1a2A4 | |ω+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗I⊗I⊗I⊗I⊗I I⊗I⊗I⊗I⊗I⊗I⊗I |
|δ−⟩a1a2A4 | |ω+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗I⊗I⊗Z⊗I⊗I I⊗I⊗I⊗I⊗Z⊗I⊗I |
|δ−⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗I⊗I⊗X⊗X⊗X I⊗I⊗I⊗I⊗X⊗X⊗X |
|δ−⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗I⊗I⊗-iY⊗X⊗X I⊗I⊗I⊗I⊗-iY⊗X⊗X |
|δ−⟩a1a2A4 | |ω−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗Z⊗I⊗I⊗I⊗I I⊗I⊗Z⊗I⊗I⊗I⊗I |
|δ−⟩a1a2A4 | |ω−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗Z⊗I⊗Z⊗I⊗I I⊗I⊗Z⊗I⊗Z⊗I⊗I |
|δ−⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗Z⊗I⊗X⊗X⊗X I⊗I⊗Z⊗I⊗X⊗X⊗X |
|δ−⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗Z⊗I⊗-iY⊗X⊗X I⊗I⊗Z⊗I⊗-iY⊗X⊗X |
|δ−⟩a1a2A4 | |μ+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗X⊗X⊗I⊗I⊗I I⊗I⊗X⊗X⊗I⊗I⊗I |
|δ−⟩a1a2A4 | |μ+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗X⊗X⊗Z⊗I⊗I I⊗I⊗X⊗X⊗Z⊗I⊗I |
|δ−⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗X⊗X⊗X⊗X⊗X I⊗I⊗X⊗X⊗X⊗X⊗X |
|δ−⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗X⊗X⊗-iY⊗X⊗X I⊗I⊗X⊗X⊗-iY⊗X⊗X |
|δ−⟩a1a2A4 | |μ−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗-iY⊗X⊗I⊗I⊗I I⊗I⊗-iY⊗X⊗I⊗I⊗I |
|δ−⟩a1a2A4 | |μ−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗-iY⊗X⊗Z⊗I⊗I I⊗I⊗-iY⊗X⊗Z⊗I⊗I |
|δ−⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗-iY⊗X⊗X⊗X⊗X I⊗I⊗-iY⊗X⊗X⊗X⊗X |
|δ−⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | Z⊗I⊗-iY⊗X⊗-iY⊗X⊗X I⊗I⊗-iY⊗X⊗-iY⊗X⊗X |
|η+⟩a1a2A4 | |ω+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗I⊗I⊗I⊗I⊗I -iY⊗X⊗I⊗I⊗I⊗I⊗I |
|η+⟩a1a2A4 | |ω+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗I⊗I⊗Z⊗I⊗I -iY⊗X⊗I⊗I⊗Z⊗I⊗I |
|η+⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗I⊗I⊗X⊗X⊗X -iY⊗X⊗I⊗I⊗X⊗X⊗X |
|η+⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗I⊗I⊗-iY⊗X⊗X -iY⊗X⊗I⊗I⊗-iY⊗X⊗X |
|η+⟩a1a2A4 | |ω−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗Z⊗I⊗I⊗I⊗I -iY⊗X⊗Z⊗I⊗I⊗I⊗I |
|η+⟩a1a2A4 | |ω−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗Z⊗I⊗Z⊗I⊗I -iY⊗X⊗Z⊗I⊗Z⊗I⊗I |
|η+⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗Z⊗I⊗X⊗X⊗X -iY⊗X⊗Z⊗I⊗X⊗X⊗X |
|η+⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗Z⊗I⊗-iY⊗X⊗X -iY⊗X⊗Z⊗I⊗-iY⊗X⊗X |
|η+⟩a1a2A4 | |μ+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗X⊗X⊗I⊗I⊗I -iY⊗X⊗X⊗X⊗I⊗I⊗I |
|η+⟩a1a2A4 | |μ+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗X⊗X⊗Z⊗I⊗I -iY⊗X⊗X⊗X⊗Z⊗I⊗I |
|η+⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗X⊗X⊗X⊗X⊗X -iY⊗X⊗X⊗X⊗X⊗X⊗X |
|η+⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗X⊗X⊗-iY⊗X⊗X -iY⊗X⊗X⊗X⊗-iY⊗X⊗X |
|η+⟩a1a2A4 | |μ−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗-iY⊗X⊗I⊗I⊗I -iY⊗X⊗-iY⊗X⊗I⊗I⊗I |
|η+⟩a1a2A4 | |μ−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗-iY⊗X⊗Z⊗I⊗I -iY⊗X⊗-iY⊗X⊗Z⊗I⊗I |
|η+⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗-iY⊗X⊗X⊗X⊗X -iY⊗X⊗-iY⊗X⊗X⊗X⊗X |
|η+⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | X⊗X⊗-iY⊗X⊗-iY⊗X⊗X -iY⊗X⊗-iY⊗X⊗-iY⊗X⊗X |
|η−⟩a1a2A4 | |ω+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗I⊗I⊗I⊗I⊗I X⊗X⊗I⊗I⊗I⊗I⊗I |
|η−⟩a1a2A4 | |ω+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗I⊗I⊗Z⊗I⊗I X⊗X⊗I⊗I⊗Z⊗I⊗I |
|η−⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗I⊗I⊗X⊗X⊗X X⊗X⊗I⊗I⊗X⊗X⊗X |
|η−⟩a1a2A4 | |ω+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗I⊗I⊗-iY⊗X⊗X X⊗X⊗I⊗I⊗-iY⊗X⊗X |
|η−⟩a1a2A4 | |ω−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗Z⊗I⊗I⊗I⊗I X⊗X⊗Z⊗I⊗I⊗I⊗I |
|η−⟩a1a2A4 | |ω−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗Z⊗I⊗Z⊗I⊗I X⊗X⊗Z⊗I⊗Z⊗I⊗I |
|η−⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗Z⊗I⊗X⊗X⊗X X⊗X⊗Z⊗I⊗X⊗X⊗X |
|η−⟩a1a2A4 | |ω−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗Z⊗I⊗-iY⊗X⊗X X⊗X⊗Z⊗I⊗-iY⊗X⊗X |
|η−⟩a1a2A4 | |μ+⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗X⊗X⊗I⊗I⊗I X⊗X⊗X⊗X⊗I⊗I⊗I |
|η−⟩a1a2A4 | |μ+⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗X⊗X⊗Z⊗I⊗I X⊗X⊗X⊗X⊗Z⊗I⊗I |
|η−⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗X⊗X⊗X⊗X⊗X X⊗X⊗X⊗X⊗X⊗X⊗X |
|η−⟩a1a2A4 | |μ+⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗X⊗X⊗-iY⊗X⊗X X⊗X⊗X⊗X⊗-iY⊗X⊗X |
|η−⟩a1a2A4 | |μ−⟩b1b2B3 | |ε+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗-iY⊗X⊗I⊗I⊗I X⊗X⊗-iY⊗X⊗I⊗I⊗I |
|η−⟩a1a2A4 | |μ−⟩b1b2B3 | |ε−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗-iY⊗X⊗Z⊗I⊗I X⊗X⊗-iY⊗X⊗Z⊗I⊗I |
|η−⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ+⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗-iY⊗X⊗X⊗X⊗X X⊗X⊗-iY⊗X⊗X⊗X⊗X |
|η−⟩a1a2A4 | |μ−⟩b1b2B3 | |ℓ−⟩c1c2c3C3 | |ℏ±⟩D | -iY⊗X⊗-iY⊗X⊗-iY⊗X⊗X X⊗X⊗-iY⊗X⊗-iY⊗X⊗X |
References
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.-S.; Tomita, A. Teleportation of an Unknown State by W State. Phys. Lett. A 2002, 296, 161–164. [Google Scholar] [CrossRef]
- Ursin, R.; Jennewein, T.; Aspelmeyer, M.; Kaltenbaek, R.; Lindenthal, M.; Walther, P.; Zeilinger, A. Quantum Teleportation across the Danube. Nature 2004, 430, 849. [Google Scholar] [CrossRef]
- Agrawal, P.; Pati, A. Perfect Teleportation and Superdense Coding with W-States. Phys. Rev. A 2006, 74, 062320. [Google Scholar] [CrossRef]
- Dong, L.; Xiu, X.M.; Gao, Y.J.; Chi, F. Quantum Secure Direct Communication Using W State. Commun. Theor. Phys. 2008, 49, 1495–1498. [Google Scholar] [CrossRef]
- Ma, S.-Y.; Chen, X.-B.; Luo, M.-X.; Zhang, R.; Yang, Y.-X. Remote Preparation of a Four-Particle Entangled Cluster-Type State. Opt. Commun. 2011, 284, 4088–4093. [Google Scholar] [CrossRef]
- Saha, D.; Panigrahi, P.K. N-Qubit Quantum Teleportation, Information Splitting and Superdense Coding through the Composite GHZ–Bell Channel. Quantum Inf. Process. 2012, 11, 615–628. [Google Scholar] [CrossRef]
- Weedbrook, C. Continuous-Variable Quantum Key Distribution with Entanglement in the Middle. Phys. Rev. A 2013, 87, 022308. [Google Scholar] [CrossRef]
- Ramírez, M.D.G.; Falaye, B.J.; Sun, G.-H.; Cruz-Irisson, M.; Dong, S.-H. Quantum Teleportation and Information Splitting via Four-Qubit Cluster State and a Bell State. Front. Phys. 2017, 12, 120306. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, S.; Liu, Y.; Zheng, Q.; Wang, Y. Comment on Quantum Teleportation and Information Splitting via Four-Qubit Cluster State and a Bell State. arXiv 2018. [CrossRef]
- Hou, K.; Bao, D.; Zhu, C.; Yang, Y. Controlled Teleportation of an Arbitrary Two-Qubit Entanglement in Noises Environment. Quantum Inf. Process. 2019, 18, 104. [Google Scholar] [CrossRef]
- Chen, J.; Li, D.; Liu, M.; Yang, Y.; Zhou, Q. Quantum Controlled Teleportation of Bell State Using Seven-Qubit Entangled State. Int. J. Theor. Phys. 2020, 59, 1402–1412. [Google Scholar] [CrossRef]
- Yan, A. Bidirectional Controlled Teleportation via Six-Qubit Cluster State. Int. J. Theor. Phys. 2013, 52, 3870–3873. [Google Scholar] [CrossRef]
- Kazemikhah, P.; Tabalvandani, M.B.; Mafi, Y.; Aghababa, H. Asymmetric Bidirectional Controlled Quantum Teleportation Using Eight Qubit Cluster State. Int. J. Theor. Phys. 2022, 61, 17. [Google Scholar] [CrossRef]
- Zha, X.-W.; Zou, Z.-C.; Qi, J.-X.; Song, H.-Y. Bidirectional Quantum Controlled Teleportation via Five-Qubit Cluster State. Int. J. Theor. Phys. 2013, 52, 1740–1744. [Google Scholar] [CrossRef]
- Duan, Y.-J.; Zha, X.-W. Bidirectional Quantum Controlled Teleportation via a Six-Qubit Entangled State. Int. J. Theor. Phys. 2014, 53, 3780–3786. [Google Scholar] [CrossRef]
- Wang, X.; Mo, Z. Bidirectional Controlled Joint Remote State Preparation via a Seven-Qubit Entangled State. Int. J. Theor. Phys. 2017, 56, 1052–1058. [Google Scholar] [CrossRef]
- Shi, J.; Zhan, Y.-B. Scheme for Asymmetric and Deterministic Controlled Bidirectional Joint Remote State Preparation. Commun. Theor. Phys. 2018, 70, 515. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, Y.; Sang, M.; Nie, Y. Bidirectional Controlled Remote State Preparation of an Arbitrary Two-Qubit State. Int. J. Theor. Phys. 2019, 58, 2228–2234. [Google Scholar] [CrossRef]
- Ma, P.-C.; Chen, G.-B.; Li, X.-W.; Zhan, Y.-B. Schemes for Hybrid Bidirectional Controlled Quantum Communication via Multi-Qubit Entangled States. Int. J. Theor. Phys. 2018, 57, 443–452. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Du, J.; Liu, S.-Y.; Wang, X.-H. Cyclic Quantum Teleportation. Quantum Inf. Process. 2017, 16, 201. [Google Scholar] [CrossRef]
- Sang, Z. Cyclic Controlled Teleportation by Using a Seven-Qubit Entangled State. Int. J. Theor. Phys. 2018, 57, 3835–3838. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Mousoli, R. Controlled Cyclic Remote State Preparation of Arbitrary Qubit States. CMC Comput. Mater. Contin. 1970, 55, 321–329. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, H. Quantum Double-Direction Cyclic Controlled Communication via a Thirteen-Qubit Entangled State. Quantum Inf. Process. 2020, 19, 120. [Google Scholar] [CrossRef]
- Zhang, D.; Zha, X.-W.; Duan, Y.-J. Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 2015, 54, 1711–1719. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Samanta, S. Asymmetric bidirectional 3 ⇔ 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 2017, 56, 3285–3296. [Google Scholar] [CrossRef]
- Jie, X.; Zhou, R.-G. Asymmetric bidirectional cyclic controlled quantum teleportation in noisy environment. Quantum Inf. Process. 2023, 22, 376. [Google Scholar]
- Huo, G.; Zhang, T.; Zha, X.; Zhang, X.; Zhang, M. Controlled asymmetric bidirectional quantum teleportation of two-and three-qubit states. Quantum Inf. Process. 2021, 20, 24. [Google Scholar] [CrossRef]
- Oh, S.; Lee, S.; Lee, H.W. Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 2002, 66, 022316. [Google Scholar] [CrossRef]
- Jung, E.; Hwang, M.R.; Ju, Y.H.; Kim, M.S.; Yoo, S.K.; Kim, H.; Park, D.; Son, J.-W.; Tamaryan, S.; Cha, S.K. Greenberger-Horne-Zeilinger versus W states: Quantum teleportation through noisy channels. Phys. Rev. A—At. Mol. Opt. Phys. 2008, 78, 012312. [Google Scholar]
- Hu, M.L. Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 2011, 375, 2140–2143. [Google Scholar] [CrossRef]
- Hu, M.-L. Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states. Ann. Phys. 2012, 327, 2332–2342. [Google Scholar] [CrossRef]
- Li, Y.-L.; Zu, C.-J.; Wei, D.-M. Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. Quantum Inf. Process. 2019, 18, 2. [Google Scholar] [CrossRef]
- Liang, X.-T. Classical Information Capacities of Some Single Qubit Quantum Noisy Channels. Commun. Theor. Phys. 2003, 39, 537–542. [Google Scholar] [CrossRef]
- Gao, T.; Yan, F.L.; Wang, Z.X. Controlled Quantum Teleportation and Secure Direct Communication. Chin. Phys. 2005, 14, 893–897. [Google Scholar] [CrossRef]
- Sang, M. Bidirectional Quantum Controlled Teleportation by Using a Seven-Qubit Entangled State. Int. J. Theor. Phys. 2016, 55, 380–383. [Google Scholar] [CrossRef]
- Shao, Z.; Long, Y. Circular Controlled Quantum Teleportation by a Genuine Seven-Qubit Entangled State. Int. J. Theor. Phys. 2019, 58, 1957–1967. [Google Scholar] [CrossRef]
- Jiang, Y.-L.; Zhou, R.-G.; Hao, D.-Y.; Hu, W. Bidirectional Controlled Quantum Teleportation of Three-Qubit State by a New Entangled Eleven-Qubit State. Int. J. Theor. Phys. 2021, 60, 3618–3630. [Google Scholar] [CrossRef]
- Zhou, R.-G.; Qian, C.; Ian, H. Cyclic and Bidirectional Quantum Teleportation via Pseudo Multi-Qubit States. IEEE Access 2019, 7, 42445–42449. [Google Scholar] [CrossRef]
- Jiang, S.-X.; Zhou, R.-G.; Xu, R.; Luo, G. Cyclic Hybrid Double-Channel Quantum Communication via Bell-State and GHZ-State in Noisy Environments. IEEE Access 2019, 7, 80530–80541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H. Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment. Entropy 2024, 26, 1108. https://doi.org/10.3390/e26121108
Zhou H. Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment. Entropy. 2024; 26(12):1108. https://doi.org/10.3390/e26121108
Chicago/Turabian StyleZhou, Hanxuan. 2024. "Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment" Entropy 26, no. 12: 1108. https://doi.org/10.3390/e26121108
APA StyleZhou, H. (2024). Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment. Entropy, 26(12), 1108. https://doi.org/10.3390/e26121108