Estimation of Weighted Extropy with Focus on Its Use in Reliability Modeling
Abstract
:1. Introduction
2. Log Kernel Estimation of Weighted Extropy
- ,
- ,
- ,
- < .
Optimal Bandwidth
3. Empirical Estimation of Weighted Extropy
4. Simulation Study
5. Data Analysis
5.1. Data 1
5.2. Data 2 (Heavy-Tailed Data)
5.3. Data 3 (The Time until Failure of the Three Systems)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Belis, M.; Guiasu, S. A quantitative-qualitative measure of information in cybernatic systems. IEEE Trans. Inf. Theory 1968, 14, 593–594. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Longobardi, M. On weighted residual and past entropies. Sci. Math. Jpn. 2006, 64, 255–266. [Google Scholar]
- Lad, F.; Sanfilippo, G.; Agro, G. Extropy: Complementary dual of entropy. Stat. Sci. 2015, 30, 40–58. [Google Scholar] [CrossRef]
- Qiu, G. Extropy of order statistics and record values. Stat. Probab. Lett. 2017, 120, 52–60. [Google Scholar] [CrossRef]
- Becerra, A.; de la Rosa, J.I.; Gonzalez, E.; Pedroza, A.D.; Escalante, N.I. Training deep neural networks with non-uniform frame-level cost function for automatic speech recognition. Multimed. Tools Appl. 2018, 77, 27231–27267. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Buono, F.; Longobardi, M. On weighted extropies. Commun. Stat.-Theory Methods 2022, 51, 6250–6267. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Buono, F.; Longobardi, M. On Tsallis extropy with an application to pattern recognition. Stat. Probab. Lett. 2020, 180, 109241. [Google Scholar] [CrossRef]
- Buono, F.; Kamari, O.; Longobardi, M. Interval extropy and weighted interval extropy. Ric. Mat. 2023, 72, 283–298. [Google Scholar] [CrossRef]
- Kazemi, R.; Tahmasebi, S.; Calì, C.; Longobardi, M. Cumulative residual extropy of minimum ranked set sampling with unequal samples. Results Appl. Math. 2021, 10, 100156. [Google Scholar] [CrossRef]
- Buono, F.; Deng, Y.; Longobardi, M. The unified extropy and its versions in classical and Dempster-Shafer theories. J. Appl. Probab. 2023. [Google Scholar] [CrossRef]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman and Hall: London, UK, 1995. [Google Scholar]
- Chen, S. Optimal bandwidth selection for kernel density functionals estimation. J. Probab. Stat. 2015, 2015, 242683. [Google Scholar] [CrossRef]
- Gündüz, N.; Aydın, C. Optimal bandwidth estimators of kernel density functionals for contaminated data. J. Appl. Stat. 2021, 48, 2239–2258. [Google Scholar] [CrossRef]
- Qiu, G.; Jia, K. Extropy estimators with applications in testing uniformity. J. Nonparametr. Stat. 2018, 30, 182–196. [Google Scholar] [CrossRef]
- Rajesh, R.; Rajesh, G.; Sunoj, S. Kernel estimation of extropy function under length-biased sampling. Stat. Probab. Lett. 2022, 181, 109290. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R.; Archana, K. Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition. Ric. Mat. 2021, 55, 119–139. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R.; Bakouch, H.; Krishnakumar, A.; Qarmalah, N. Kernel Estimation of the Extropy Function under α-Mixing Dependent Data. Symmetry 2023, 15, 796. [Google Scholar] [CrossRef]
- Irshad, M.R.; Maya, R. Non-parametric log kernel estimation of extropy function. Chil. J. Stat. 2022, 13, 155–163. [Google Scholar]
- Sathar, E.A.; Nair, R.D. On dynamic weighted extropy. J. Comput. Appl. Math. 2021, 393, 113507. [Google Scholar] [CrossRef]
- Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Charpentier, A.; Flachaire, E. Log-transform kernel density estimation of income distribution. L’Actual. Econ. Rev. Anal. Econ. 2015, 91, 141–159. [Google Scholar] [CrossRef]
- Jahanshahi, S.M.A.; Zarei, H.; Khammar, A.H. On Cumulative Residual Extropy. Probab. Eng. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Noughabi, H.A.; Jarrahiferriz, J. On estimation of extropy. J. Nonparametr. Stat. 2019, 31, 88–99. [Google Scholar] [CrossRef]
- Sheather, S.J.; Jones, M.C. A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B 1991, 53, 683–690. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: Hoboken, NJ, USA, 2011; Volume 362. [Google Scholar]
- Lee, E.T.; Wang, J.W. Statistical Methods for Survival Data Analysis, 3rd ed.; Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Rai, R.N.; Chaturvedi, S.K.; Bolia, N. Repairable Systems Reliability Analysis: A Comprehensive Framework; John Wiley and Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Ebrahimi, N. How to measure uncertainty in the residual life time distribution. Sankhya Indian J. Stat. Ser. A 1996, 58, 48–56. [Google Scholar]
n | Mean | Variance |
---|---|---|
10 | −0.58602 | 0.03039 |
20 | −0.57820 | 0.02182 |
30 | −0.55622 | 0.01888 |
40 | −0.56181 | 0.01083 |
50 | −0.52369 | 0.00777 |
100 | −0.52269 | 0.00697 |
500 | −0.49937 | 0.00347 |
n | Mean | Variance |
---|---|---|
10 | −0.46220 | 0.02453 |
20 | −0.33956 | 0.01626 |
30 | −0.29213 | 0.00173 |
40 | −0.28919 | 0.00121 |
50 | −0.26677 | 0.00094 |
100 | −0.25975 | 0.00024 |
500 | −0.22331 | 0.00008 |
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.1183 | −0.11886 | −0.11904 | −0.11909 | −0.11978 | |
0.00670 | 0.00614 | 0.00596 | 0.00596 | 0.00591 | ||
0.01760 | 0.01303 | 0.01048 | 0.00948 | 0.00836 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.11952 | −0.11975 | −0.12025 | −0.12028 | −0.12061 | |
0.00548 | 0.00525 | 0.00475 | 0.00472 | 0.00439 | ||
0.00836 | 0.00774 | 0.00707 | 0.00707 | 0.00632 | ||
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.13364 | −0.13254 | −0.13088 | −0.13002 | −0.12998 | |
0.00864 | 0.00754 | 0.00588 | 0.00502 | 0.00498 | ||
0.01732 | 0.01140 | 0.00948 | 0.00874 | 0.00855 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.12989 | −0.12976 | −0.12965 | −0.12946 | −0.12955 | |
0.00489 | 0.00476 | 0.00465 | 0.00446 | 0.00455 | ||
0.00852 | 0.00832 | 0.00827 | 0.00817 | 0.00807 | ||
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.16379 | −0.14418 | −0.13857 | −0.13496 | −0.13285 | |
0.03879 | 0.01918 | 0.01357 | 0.00996 | 0.00785 | ||
0.05059 | 0.02280 | 0.01643 | 0.01224 | 0.01 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.13234 | −0.13111 | −0.13043 | −0.13005 | −0.12976 | |
0.00734 | 0.00611 | 0.00543 | 0.00505 | 0.00476 | ||
0.00948 | 0.00836 | 0.00824 | 0.00807 | 0.00807 |
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.1437 | −0.14243 | −0.14199 | −0.14199 | −0.14189 | |
0.00265 | 0.00139 | 0.00095 | 0.00095 | 0.00084 | ||
0.01581 | 0.01095 | 0.00894 | 0.00894 | 0.00707 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.14175 | −0.14121 | −0.14127 | −0.14155 | −0.1414 | |
0.0007 | 0.00016 | 0.00012 | 0.00011 | 0.00006 | ||
0.00632 | 0.00450 | 0.00447 | 0.00423 | 0.00411 | ||
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.14621 | −0.14375 | −0.14241 | −0.14207 | −0.14144 | |
0.00517 | 0.00271 | 0.00136 | 0.00103 | 0.00039 | ||
0.01612 | 0.01140 | 0.00836 | 0.00707 | 0.00632 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.14139 | −0.14138 | −0.14127 | −0.14126 | −0.14093 | |
0.00037 | 0.00034 | 0.00023 | 0.00022 | 0.00012 | ||
0.00632 | 0.00547 | 0.00547 | 0.00547 | 0.00547 | ||
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.223 | −0.17574 | −0.16491 | −0.15942 | −0.15744 | |
0.08195 | 0.03469 | 0.02386 | 0.01837 | 0.01639 | ||
0.06103 | 0.05049 | 0.03286 | 0.02738 | 0.02645 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.15401 | −0.15218 | −0.15072 | −0.15015 | −0.14888 | |
0.01296 | 0.01113 | 0.00967 | 0.00911 | 0.00783 | ||
0.02000 | 0.01581 | 0.01414 | 0.01449 | 0.01183 |
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.2097 | −0.21562 | −0.21826 | −0.22059 | −0.22285 | |
0.04030 | 0.03438 | 0.03174 | 0.02941 | 0.02715 | ||
0.05347 | 0.04289 | 0.03781 | 0.03464 | 0.03146 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.22277 | −0.22426 | −0.22511 | −0.22575 | −0.22668 | |
0.02723 | 0.02574 | 0.02489 | 0.02425 | 0.02332 | ||
0.03114 | 0.02966 | 0.02810 | 0.02756 | 0.02607 | ||
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.22576 | −0.22786 | −0.22829 | −0.23056 | −0.23045 | |
0.02424 | 0.02214 | 0.02171 | 0.01955 | 0.01944 | ||
0.04123 | 0.03162 | 0.02828 | 0.02588 | 0.02569 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.23201 | −0.23276 | −0.23325 | −0.23399 | −0.23379 | |
0.01799 | 0.01724 | 0.01675 | 0.01621 | 0.01601 | ||
0.02302 | 0.02167 | 0.02097 | 0.01974 | 0.01974 | ||
n | 50 | 100 | 150 | 200 | 250 | |
H | −0.22669 | −0.22713 | −0.22892 | −0.23084 | −0.23194 | |
0.02331 | 0.02287 | 0.02108 | 0.01916 | 0.01806 | ||
0.04147 | 0.03271 | 0.02915 | 0.02569 | 0.02366 | ||
n | 300 | 350 | 400 | 450 | 500 | |
H | −0.23168 | −0.23195 | −0.23317 | −0.23335 | −0.23361 | |
0.01832 | 0.01805 | 0.01683 | 0.01665 | 0.01639 | ||
0.02345 | 0.02213 | 0.02121 | 0.02024 | 0.01974 |
System 1 | −0.09638 | −0.12426 | −0.14345 |
System 2 | −0.19953 | −0.20431 | −0.19666 |
System 3 | −0.39227 | −0.41138 | −0.30690 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, M.R.; Archana, K.; Maya, R.; Longobardi, M. Estimation of Weighted Extropy with Focus on Its Use in Reliability Modeling. Entropy 2024, 26, 160. https://doi.org/10.3390/e26020160
Irshad MR, Archana K, Maya R, Longobardi M. Estimation of Weighted Extropy with Focus on Its Use in Reliability Modeling. Entropy. 2024; 26(2):160. https://doi.org/10.3390/e26020160
Chicago/Turabian StyleIrshad, Muhammed Rasheed, Krishnakumar Archana, Radhakumari Maya, and Maria Longobardi. 2024. "Estimation of Weighted Extropy with Focus on Its Use in Reliability Modeling" Entropy 26, no. 2: 160. https://doi.org/10.3390/e26020160
APA StyleIrshad, M. R., Archana, K., Maya, R., & Longobardi, M. (2024). Estimation of Weighted Extropy with Focus on Its Use in Reliability Modeling. Entropy, 26(2), 160. https://doi.org/10.3390/e26020160