Lévy Flight Model of Gaze Trajectories to Assist in ADHD Diagnoses
Abstract
:1. Introduction
2. Data and Methods
2.1. Data: Eye-Gaze Trajectories and ADHD Cognitive Test
2.2. Lévy Flights and Superdiffusion
2.3. Machine Learning Classification Methods
2.3.1. Logistic Regression
2.3.2. Support Vector Machines
2.3.3. Decision Trees and Random Forests
2.4. Cross-Validation Strategies
3. Results: Lévy Flight Exponents to Identify ADHD Children
3.1. Eye-Gaze Dynamics and the Lévy Flight Exponent
3.2. Classifying ADHD without Eye-Tracking
3.3. Classifying ADHD with Eye-Tracking
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lencastre, P.; Bhurtel, S.; Yazidi, A.; e Mello, G.B.; Denysov, S.; Lind, P.G. EyeT4Empathy: Dataset of foraging for visual information, gaze typing and empathy assessment. Sci. Data 2022, 9, 752. [Google Scholar] [CrossRef]
- Takahashi, M.; Sugiuchi, Y.; Na, J.; Shinoda, Y. Brainstem circuits triggering saccades and fixation. J. Neurosci. 2022, 42, 789–803. [Google Scholar] [CrossRef]
- Dubkov, A.A.; Spagnolo, B.; Uchaikin, V.V. Lévy flight superdiffusion: An introduction. Int. J. Bifurc. Chaos 2008, 18, 2649–2672. [Google Scholar] [CrossRef]
- Rhodes, T.; Kello, C.T.; Kerster, B. Intrinsic and extrinsic contributions to heavy tails in visual foraging. Vis. Cogn. 2014, 22, 809–842. [Google Scholar] [CrossRef]
- Błażejczyk, P.; Magdziarz, M. Stochastic modeling of Lévy-like human eye movements. Chaos 2021, 31, 043129. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, D.; Geisel, T. The ecology of gaze shifts. Neurocomputing 2000, 32–33, 643–650. [Google Scholar] [CrossRef]
- Stephen, D.G.; Mirman, D.; Magnuson, J.S.; Dixon, J.A. Lévy-like diffusion in eye movements during spoken-language comprehension. Phys. Rev. E 2009, 79, 056114. [Google Scholar] [CrossRef]
- Boccignone, G.; Ferraro, M. Modelling gaze shift as a constrained random walk. Phys. A Stat. Mech. Its Appl. 2004, 331, 207–218. [Google Scholar] [CrossRef]
- Viswanathan, G.M.; Raposo, E.; Da Luz, M. Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 2008, 5, 133–150. [Google Scholar] [CrossRef]
- Ariel, G.; Rabani, A.; Benisty, S.; Partridge, J.; Harshey, R.; Be’Er, A. Swarming bacteria migrate by Lévy Walk. Nat. Commun. 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Yan, X.F.; Ye, D.Y. Improved bacterial foraging optimization algorithm based on Levy flight. Comput. Syst. Appl. 2015, 24, 124–132. [Google Scholar]
- Viswanathan, G.; Afanasyev, V.; Buldyrev, S.; Murphy, E.; Prince, P.; Stanley, E. Lévy flight search patterns of wandering albatrosses. Nature 1996, 381, 413–415. [Google Scholar] [CrossRef]
- Sims, D.; Humphries, N.; Bradford, R.; Bruce, B. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J. Anim. Ecol. 2012, 81, 432–442. [Google Scholar] [CrossRef]
- Rhee, I.; Shin, M.; Hong, S.; Lee, K.; Kim, S.; Chong, S. On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 2011, 19, 630–643. [Google Scholar] [CrossRef]
- Radicchi, F.; Baronchelli, A.; Amaral, L.A. Rationality, irrationality and escalating behavior in lowest unique bid auctions. PLoS ONE 2012, 7, e29910. [Google Scholar] [CrossRef]
- Rhodes, T.; Turvey, M.T. Human memory retrieval as Lévy foraging. Phys. A Stat. Mech. Its Appl. 2007, 385, 255–260. [Google Scholar] [CrossRef]
- Rasanan, A.H.H.; Rad, J.A.; Sewell, D.K. Are there jumps in evidence accumulation, and what, if anything, do they reflect psychologically? An analysis of Lévy Flights models of decision-making. Psychon. Bull. Rev. 2023, 31, 32–48. [Google Scholar] [CrossRef]
- Wieschen, E.M.; Voss, A.; Radev, S. Jumping to conclusion? a lévy flight model of decision making. Quant. Methods Psychol. 2020, 16, 120–132. [Google Scholar] [CrossRef]
- Voss, A.; Lerche, V.; Mertens, U.; Voss, J. Sequential sampling models with variable boundaries and non-normal noise: A comparison of six models. Psychon. Bull. Rev. 2019, 26, 813–832. [Google Scholar] [CrossRef]
- Credidio, H.; Teixeira, E.; Reis, S.; Moreira, A.A.; Andrade, J.S., Jr. Statistical patterns of visual search for hidden objects. Sci. Rep. 2012, 2, 920. [Google Scholar] [CrossRef]
- Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 2011, 83, 81. [Google Scholar] [CrossRef]
- Viswanathan, G.M.; Buldyrev, S.V.; Havlin, S.; Da Luz, M.; Raposo, E.; Stanley, H.E. Optimizing the success of random searches. Nature 1999, 401, 911–914. [Google Scholar] [CrossRef]
- Kröger, J.L.; Lutz, O.H.M.; Müller, F. What does your gaze reveal about you? On the privacy implications of eye tracking. In Proceedings of the IFIP International Summer School on Privacy and Identity Management, Windisch, Switzerland, 19–23 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 226–241. [Google Scholar]
- Berkovsky, S.; Taib, R.; Koprinska, I.; Wang, E.; Zeng, Y.; Li, J.; Kleitman, S. Detecting personality traits using eye-tracking data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Kasneci, E.; Kasneci, G.; Appel, T.; Haug, J.; Wortha, F.; Tibus, M.; Trautwein, U.; Gerjets, P. TüEyeQ, a rich IQ test performance data set with eye movement, educational and socio-demographic information. Sci. Data 2021, 8, 154. [Google Scholar] [CrossRef]
- Holden, J.G.; Cosnard, A.; Laurens, B.; Asselineau, J.; Biotti, D.; Cubizolle, S.; Dupouy, S.; Formaglio, M.; Koric, L.; Seassau, M.; et al. Prodromal Alzheimer’s disease demonstrates increased errors at a simple and automated anti-saccade task. J. Alzheimer’s Dis. 2018, 65, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Wadhera, T.; Kakkar, D. Eye Tracker: An Assistive Tool in Diagnosis of Autism Spectrum Disorder. In Emerging Trends in the Diagnosis and Intervention of Neurodevelopmental Disorders; IGI Global: Hershey, PA, USA, 2019; pp. 125–152. [Google Scholar]
- Wang, H.; Liu, F.; Dong, Y.; Yu, D. Entropy of eye movement during rapid automatized naming. Front. Hum. Neurosci. 2022, 16, 945406. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, F.; Dong, Y.; Yu, D. Features of eye movements during rapid automatized naming in Chinese children aged 7–11 years. Front. Pediatr. 2022, 10, 1051432. [Google Scholar] [CrossRef]
- Elder, T.E. The importance of relative standards in ADHD diagnoses: Evidence based on exact birth dates. J. Health Econ. 2010, 29, 641–656. [Google Scholar] [CrossRef]
- Caldani, S.; Acquaviva, E.; Moscoso, A.; Peyre, H.; Delorme, R.; Bucci, M.P. Reading performance in children with ADHD: An eye-tracking study. Ann. Dyslexia 2022, 72, 552–565. [Google Scholar] [CrossRef]
- Mohammadhasani, N.; Caprì, T.; Nucita, A.; Iannizzotto, G.; Fabio, R.A. Atypical visual scan path affects remembering in ADHD. J. Int. Neuropsychol. Soc. 2020, 26, 557–566. [Google Scholar] [CrossRef]
- Wolraich, M.L.; Hagan, J.F., Jr.; Allan, C.; Chan, E.; Davison, D.; Earls, M.; Evans, S.W.; Flinn, S.K.; Froehlich, T.; Frost, J.; et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics 2019, 144, e20192528. [Google Scholar] [CrossRef]
- Wymbs, B.T.; Canu, W.H.; Sacchetti, G.M.; Ranson, L.M. Adult ADHD and romantic relationships: What we know and what we can do to help. J. Marital Fam. Ther. 2021, 47, 664–681. [Google Scholar] [CrossRef]
- Lev, A.; Braw, Y.; Elbaum, T.; Wagner, M.; Rassovsky, Y. Eye tracking during a continuous performance test: Utility for assessing ADHD patients. J. Atten. Disord. 2022, 26, 245–255. [Google Scholar] [CrossRef]
- Stokes, J.D.; Rizzo, A.; Geng, J.J.; Schweitzer, J.B. Measuring attentional distraction in children with ADHD using virtual reality technology with eye-tracking. Front. Virtual Real. 2022, 3, 855895. [Google Scholar] [CrossRef]
- Valliappan, N.; Dai, N.; Steinberg, E.; He, J.; Rogers, K.; Ramachandran, V.; Xu, P.; Shojaeizadeh, M.; Guo, L.; Kohlhoff, K.; et al. Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nat. Commun. 2020, 11, 4553. [Google Scholar] [CrossRef]
- Rojas-Líbano, D.; Wainstein, G.; Carrasco, X.; Aboitiz, F.; Crossley, N.; Ossandón, T. A pupil size, eye-tracking and neuropsychological dataset from ADHD children during a cognitive task. Sci. Data 2019, 6, 25. [Google Scholar] [CrossRef]
- First, M.B.; France, A.; Pincus, H.A. DSM-IV-TR Guidebook; American Psychiatric Publishing, Inc.: Washington, DC, USA, 2004. [Google Scholar]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar]
- Wainstein, G.; Rojas-Líbano, D.; Crossley, N.; Carrasco, X.; Aboitiz, F.; Ossandón, T. Pupil size tracks attentional performance in attention-deficit/hyperactivity disorder. Sci. Rep. 2017, 7, 8228. [Google Scholar] [CrossRef]
- Mealer, C.; Morgan, S.B.; Luscomb, R.L. Cognitive functioning of ADHD and non-ADHD boys on the WISC-III and WRAML: An analysis within a memory model. J. Atten. Disord. 1996, 1, 133–145. [Google Scholar] [CrossRef]
- Lopes, R.; Farina, M.; Wendt, G.; Esteves, C.; Argimon, I. WISC-III Sensibility in the identification of Attention Deficit Hyperactivity Disorder (ADHD). Panam. J. Neuropsychol. 2012, 6, 128–140. [Google Scholar] [CrossRef]
- Lencastre e Silva, P. Lévy Flight Model of Gaze Trajectories Code and Data. 2024. Available online: https://figshare.com/articles/software/ADHD-for-Github_replication_ipynb/25274065 (accessed on 10 April 2024).
- Mandelbrot, B.B.; Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar]
- Einstein, A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. Der Phys. 1905, 17, 208. [Google Scholar]
- Klafter, J.; Sokolov, I.M. First Steps in Random Walks: From Tools to Applications; Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Buldyrev, S.; Goldberger, A.; Havlin, S.; Peng, C.; Simons, M.; Stanley, H. Generalized Levy-Walk Model for DNA Nucleotide Sequences. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1993, 47, 4514–4523. [Google Scholar] [CrossRef]
- Gorjao, L.R.; Hassan, G.; Kurths, J.; Witthaut, D. MFDFA: Efficient multifractal detrended fluctuation analysis in python. Comput. Phys. Commun. 2022, 273, 108254. [Google Scholar] [CrossRef]
- Campeau, W.; Simons, A.M.; Stevens, B. The evolutionary maintenance of Lévy flight foraging. PLoS Comput. Biol. 2022, 18, e1009490. [Google Scholar] [CrossRef]
- Guinard, B.; Korman, A. Intermittent inverse-square Lévy walks are optimal for finding targets of all sizes. Sci. Adv. 2021, 7, eabe8211. [Google Scholar] [CrossRef]
- Levernier, N.; Textor, J.; Bénichou, O.; Voituriez, R. Inverse square Lévy walks are not optimal search strategies for d ≥ 2. Phys. Rev. Lett. 2020, 124, 080601. [Google Scholar] [CrossRef]
- Buldyrev, S.; Raposo, E.; Bartumeus, F.; Havlin, S.; Rusch, F.; Da Luz, M.; Viswanathan, G. Comment on “inverse square Lévy walks are not optimal search strategies for d ≥ 2”. Phys. Rev. Lett. 2021, 126, 048901. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, X.; Yu, D. Nonlinear features of gaze behavior during joint attention in children with autism spectrum disorder. Autism Res. 2023, 16, 1786–1798. [Google Scholar] [CrossRef]
- Deng, S.; Prasse, P.; Reich, D.R.; Dziemian, S.; Stegenwallner-Schütz, M.; Krakowczyk, D.; Makowski, S.; Langer, N.; Scheffer, T.; Jäger, L.A. Detection of ADHD based on eye movements during natural viewing. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Grenoble, France, 19–23 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 403–418. [Google Scholar]
- Das, W.; Khanna, S. A robust machine learning based framework for the automated detection of ADHD using pupillometric biomarkers and time series analysis. Sci. Rep. 2021, 11, 16370. [Google Scholar] [CrossRef]
- Lencastre, P.; Lotfigolian, M.; Lind, P.G. Identifying autism from five-second records of eye-gaze trajectories. 2024; submitted. [Google Scholar]
- Fuchs, A.; Queirós, S.M.D.; Lind, P.G.; Girard, A.; Bouchet, F.; Wächter, M.; Peinke, J. Small scale structures of turbulence in terms of entropy and fluctuation theorems. Phys. Rev. Fluids 2020, 5, 034602. [Google Scholar] [CrossRef]
in Model | Type of CV | Logistic | SVC | Decision | Random |
---|---|---|---|---|---|
Variables | Regression | Tree | Forest | ||
Excluding | SKF (k = 5) | 0.724 | 0.680 | 0.611 | 0.680 |
Excluding | LOOC | 0.724 | 0.724 | 0.680 | 0.724 |
Including | LOOC | 0.765 | 0.765 | 0.724 | 0.744 |
Predicted Label | |||||
---|---|---|---|---|---|
True label | ADHD | Non-ADHD | ADHD | Non-ADHD | |
ADHD | 13 | 8 | 15 | 6 | |
non-ADHD | 5 | 21 | 5 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanikolaou, C.; Sharma, A.; Lind, P.G.; Lencastre, P. Lévy Flight Model of Gaze Trajectories to Assist in ADHD Diagnoses. Entropy 2024, 26, 392. https://doi.org/10.3390/e26050392
Papanikolaou C, Sharma A, Lind PG, Lencastre P. Lévy Flight Model of Gaze Trajectories to Assist in ADHD Diagnoses. Entropy. 2024; 26(5):392. https://doi.org/10.3390/e26050392
Chicago/Turabian StylePapanikolaou, Christos, Akriti Sharma, Pedro G. Lind, and Pedro Lencastre. 2024. "Lévy Flight Model of Gaze Trajectories to Assist in ADHD Diagnoses" Entropy 26, no. 5: 392. https://doi.org/10.3390/e26050392
APA StylePapanikolaou, C., Sharma, A., Lind, P. G., & Lencastre, P. (2024). Lévy Flight Model of Gaze Trajectories to Assist in ADHD Diagnoses. Entropy, 26(5), 392. https://doi.org/10.3390/e26050392