Information Entropy Analysis of a PIV Image Based on Wavelet Decomposition and Reconstruction
Abstract
:1. Introduction
2. Research Method
3. Results and Discussion
3.1. Separation Flow in a T-Junction (Air) [27]
3.2. Mixing Flow in a T-Junction (Water)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Braun, M.; Schröder, W.; Klaas, M. High-speed tomographic PIV measurements in a DISI engine. Exp. Fluids 2019, 60, 146. [Google Scholar] [CrossRef]
- Qu, W.H.; Xiong, J.B. High-fidelity PIV measurements of turbulent flow in reactor pressure vessel assisted by high-precision matched index of refraction technique. Nucl. Eng. Des. 2024, 420, 112997. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, H.B.; Ren, F.; Zhang, H.; Du, P. Reconstructing turbulent velocity information for arbitrarily gappy flow fields using the deep convolutional neural network. Phys. Fluids 2022, 34, 127117. [Google Scholar] [CrossRef]
- Yin, Y.Z.; Huang, K.X.; Su, B.; Lin, M.; Wang, Q.W. Experimental study on the flow mixing in T-junctions with an impeller. Phys. Fluids 2024, 36, 025110. [Google Scholar] [CrossRef]
- Xie, W.D.; Shi, T.; Ge, B.; Zang, S.S. Experimental and numerical comparisons of geometric scaling criteria for lean premixed swirl combustor. Phys. Fluids 2023, 35, 097119. [Google Scholar] [CrossRef]
- Jose, A.V.; Chen, J.M. Segmentation of two-dimensional curve contours. Pattern Recognit. 1992, 25, 1129–1140. [Google Scholar]
- Grant, I.; Pan, X. The use of neural techniques in PIV and PTV. Meas. Sci. Technol. 1997, 8, 1399–1405. [Google Scholar] [CrossRef]
- Shubhra, K.M.; Thomas, M.; Kambhamettu, C. Estimation of complex air–water interfaces from particle image velocimetry images. Exp. Fluids 2006, 40, 764–775. [Google Scholar]
- Dellenback, P.A.; Macharivilakathu, J.; Pierce, S.R. Contrast-enhancement techniques for particle-image velocimetry. Appl. Opt. 2000, 39, 5978–5990. [Google Scholar] [CrossRef]
- Shi, S.X.; Chen, D.Y. The development of an automated PIV image processing software-smart PIV. Flow. Meas. Instrum. 2011, 22, 181–189. [Google Scholar] [CrossRef]
- Wang, X.Y.; He, J.; Su, B.; Ke, H.B.; Lin, M.; Chen, Y.T. Flow structure of the entrance of a T-junction duct without/with a circular cylinder. J. Turbul. 2019, 20, 337–359. [Google Scholar] [CrossRef]
- Li, H. Application of wavelet technique to false vector correction and data compression in PIV. Trans. Jpn. Soc. Aeronaut. Space Sci. 2003, 45, 224–228. [Google Scholar] [CrossRef]
- Huo, D.M.; Zhu, Z.L.; Wei, L.S. A visually secure image encryption scheme based on 2D compressive sensing and integer wavelet transform embedding. Opt. Commun. 2021, 6, 126976. [Google Scholar] [CrossRef]
- Sun, Z.F.; Ji, D.J.; Yang, S.D. Truncated total variation image denoising model based on fractional B-spline wavelet. J. Phys. Conf. Ser. 2021, 1920, 012103. [Google Scholar] [CrossRef]
- Dannina, K.; Chanamallu, S.R. Content-based image retrieval system based on fusion of wavelet transform, texture and shape features. Math. Model. Eng. Prob. 2021, 8, 110–116. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Lab. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wiener, N. Entropy and Information; American Mathematical Society: Providence, RL, USA, 1950. [Google Scholar]
- Brillouin, L. Physical Entropy and Information. J. Appl. Phys. 1951, 22, 338–343. [Google Scholar] [CrossRef]
- Liu, B.; Tang, J.P.; Huang, H.P.; Lu, X.Y. Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids 2020, 32, 025105. [Google Scholar] [CrossRef]
- Sciacchitano, A.; Neal, D.R.; Smith, B.L.; Warner, S.O.; Vlachos, P.P.; Wieneke, B.; Scarano, F. Collaborative framework for PIV uncertainty quantification: Comparative assessment of methods. Meas. Sci. Technol. 2015, 26, 074004. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets, 6th ed.; Society for Industrial and Applied Mathematics: Pennsylvania, PA, USA, 1999. [Google Scholar]
- Nicolis, O.; Ramírez-Cobo, P.; Vidakovic, B. 2D wavelet-based spectra with applications. Comput. Stat. Data Anal. 2011, 55, 738–751. [Google Scholar] [CrossRef]
- Mallat, S.A. Theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intel. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Mallat, S.G. A Wavelet Tour of Signal Processing. The Sparse Way, 3rd ed.; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Su, B.; Yin, Y.; Li, S.; Guo, Z.; Wang, Q.; Lin, M. Wavelet analysis on the turbulent flow structure of a T-junction. Int. J. Heat Fluid Flow 2018, 73, 124–142. [Google Scholar] [CrossRef]
- Shinde, A.N.; Nalbalwar, S.L.; Nandgaonkar, A.B. Impact of optimal scaling coefficients in biorthogonal wavelet filters on compressed sensing. Int. J. Pervasive Comput. Commun. 2022, 18, 573–602. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, X.Y.; He, J.; Lin, M.; Ke, H.B. Experimental study of flow structure characteristics for a T-junction duct with horizontal vanes. J. Fluids Eng.-Trans. ASME 2019, 141, 111111. [Google Scholar] [CrossRef]
Original PIV Image | Horizontal Details | Vertical Details | Diagonal Details | Reconstruction Image |
---|---|---|---|---|
5.6508 | 6.0086 | 6.4471 | 5.7277 | 7.5301 |
The first frame PIV image | ||||
H2,o = 5.9227 | H2,oh = 5.6668 | H2,ov = 5.5780 | H2,od = 5.6752 | H2,oc = 6.0158 |
The second frame PIV image | ||||
H2,o = 5.7979 | H2,oh = 5.5974 | H2,ov = 5.5270 | H2,od = 5.7198 | H2,oc =5.8908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Z.; Zheng, W.; Wang, X.; Lin, M. Information Entropy Analysis of a PIV Image Based on Wavelet Decomposition and Reconstruction. Entropy 2024, 26, 573. https://doi.org/10.3390/e26070573
Ke Z, Zheng W, Wang X, Lin M. Information Entropy Analysis of a PIV Image Based on Wavelet Decomposition and Reconstruction. Entropy. 2024; 26(7):573. https://doi.org/10.3390/e26070573
Chicago/Turabian StyleKe, Zhiwu, Wei Zheng, Xiaoyu Wang, and Mei Lin. 2024. "Information Entropy Analysis of a PIV Image Based on Wavelet Decomposition and Reconstruction" Entropy 26, no. 7: 573. https://doi.org/10.3390/e26070573
APA StyleKe, Z., Zheng, W., Wang, X., & Lin, M. (2024). Information Entropy Analysis of a PIV Image Based on Wavelet Decomposition and Reconstruction. Entropy, 26(7), 573. https://doi.org/10.3390/e26070573