Kramers–Wannier Duality and Random-Bond Ising Model
Abstract
:1. Introduction
2. Ihara Zeta Function
3. Manifestly Dual Formula
4. Order and Disorder Operators
5. Implication to RBIM
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KW | Kramers–Wannier |
RBIM | Random-Bond Ising Model |
References
- Kramers, H.A.; Wannier, G.H. Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 1941, 60, 252. [Google Scholar] [CrossRef]
- Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117. [Google Scholar] [CrossRef]
- Kaufman, B. Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev. 1949, 76, 1232. [Google Scholar] [CrossRef]
- Kaufman, B.; Onsager, L. Crystal statistics. III. Short-range order in a binary Ising lattice. Phys. Rev. 1949, 76, 1244. [Google Scholar] [CrossRef]
- Kadanoff, L.P.; Ceva, H. Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 1971, 3, 3918. [Google Scholar] [CrossRef]
- Fradkin, E. Disorder operators and their descendants. J. Stat. Phys. 2017, 167, 427–461. [Google Scholar] [CrossRef]
- McCoy, B.M.; Wu, T.T. The Two-Dimensional Ising Model; Harvard University Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Kac, M.; Ward, J.C. A combinatorial solution of the two-dimensional Ising model. Phys. Rev. 1952, 88, 1332. [Google Scholar] [CrossRef]
- Harary, F. Graph Theory and Theoretical Physics; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Harary, F. A Graphical Exposition of the Ising Problem. J. Aust. Math. Soc. 1971, 12, 365–377. [Google Scholar] [CrossRef]
- Sherman, S. Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs. J. Math. Phys. 1960, 1, 202–217. [Google Scholar] [CrossRef]
- Sherman, S. Combinatorial aspects of the Ising model for ferromagnetism. II. An analogue to the Witt identity. Bull. Am. Math. Soc. 1962, 68, 225–229. [Google Scholar] [CrossRef]
- Sherman, S. Addendum: Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs. J. Math. Phys. 1963, 4, 1213–1214. [Google Scholar] [CrossRef]
- Burgoyne, P. Remarks on the combinatorial approach to the Ising problem. J. Math. Phys. 1963, 4, 1320–1326. [Google Scholar] [CrossRef]
- Hurst, C.A.; Green, H.S. New solution of the Ising problem for a rectangular lattice. J. Chem. Phys. 1960, 33, 1059–1062. [Google Scholar] [CrossRef]
- Potts, R.B.; Ward, J.C. The combinatrial method and the two-dimensional Ising model. Prog. Theor. Phys. 1955, 13, 38–46. [Google Scholar] [CrossRef]
- Kasteleyn, P.W. Dimer statistics and phase transitions. J. Math. Phys. 1963, 4, 287–293. [Google Scholar] [CrossRef]
- Montroll, E.W.; Potts, R.B.; Ward, J.C. Correlations and spontaneous magnetization of the two-dimensional Ising model. J. Math. Phys. 1963, 4, 308–322. [Google Scholar] [CrossRef]
- Fisher, M.E. On the dimer solution of planar Ising models. J. Math. Phys. 1966, 7, 1776–1781. [Google Scholar] [CrossRef]
- Mercat, C. Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 2001, 218, 177–216. [Google Scholar] [CrossRef]
- Smirnov, S. Towards conformal invariance of 2D lattice models. Proc. Int. Congr. Math. 2006, 2, 1421–1451. [Google Scholar]
- Smirnov, S. Conformal invariance in random cluster models. I. Holmorphic fermions in the Ising model. Ann. Math. 2010, 172, 1435–1467. [Google Scholar] [CrossRef]
- Chelkak, D.; Cimasoni, D.; Kassel, A. Revisiting the combinatorics of the 2D Ising model. Ann. l’Inst. Henri Poincaré D 2017, 4, 309–385. [Google Scholar] [CrossRef] [PubMed]
- Cimasoni, D. The critical Ising model via Kac–Ward matrices. Commun. Math. Phys. 2012, 316, 99–126. [Google Scholar] [CrossRef]
- Cimasoni, D. Kac–Ward operators, Kasteleyn operators, and s-holomorphicity on arbitrary surface graphs. Ann. l’Inst. Henri Poincaré D 2015, 2, 113–168. [Google Scholar] [CrossRef] [PubMed]
- Ihara, Y. On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Jpn. 1966, 18, 219–235. [Google Scholar] [CrossRef]
- Sunada, T. L-functions in geometry and some applications. In Curvature and Topology of Riemannian Manifolds: Proceedings of the 17th International Taniguchi Symposium, Katata, Japan, 26–31 August 1985; Springer: Berlin/Heidelberg, Germany, 2006; pp. 266–284. [Google Scholar]
- Hashimoto, K.I. Zeta functions of finite graphs and representations of p-adic groups. Automorphic Forms Geom. Arith. Var. 1989, 15, 211–280. [Google Scholar]
- Bass, H. The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 1992, 3, 717–797. [Google Scholar] [CrossRef]
- Foata, D.; Zeilberger, D. A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs. Trans. Am. Math. Soc. 1999, 351, 2257–2274. [Google Scholar] [CrossRef]
- Terras, A. A Stroll through the Garden of Graph Zeta Functions; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hoffman, J.W. Remarks on the zeta function of a graph. Conf. Publ. 2003, 2003, 413–422. [Google Scholar]
- Domany, E. Some results for the two-dimensional Ising model with competing interactions. J. Phys. C Solid State Phys. 1979, 12, L119. [Google Scholar] [CrossRef]
- Vannimenus, J.; Toulouse, G. Theory of the frustration effect. II. Ising spins on a square lattice. J. Phys. C Solid State Phys. 1977, 10, L537. [Google Scholar] [CrossRef]
- Grinstein, G.; Jayaprakash, C.; Wortis, M. Ising magnets with frustration: Zero-temperature properties from series expansions. Phys. Rev. B 1979, 19, 260. [Google Scholar] [CrossRef]
- Nishimori, H.; Nemoto, K. Duality and multicritical point of two-dimensional spin glasses. J. Phys. Soc. Jpn. 2002, 71, 1198–1199. [Google Scholar] [CrossRef]
- Fradkin, E.; Kadanoff, L.P. Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B 1980, 170, 1–15. [Google Scholar] [CrossRef]
- Kang, M.H.; Li, W.C.W. Zeta functions of complexes arising from PGL (3). Adv. Math. 2014, 256, 46–103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C. Kramers–Wannier Duality and Random-Bond Ising Model. Entropy 2024, 26, 636. https://doi.org/10.3390/e26080636
Song C. Kramers–Wannier Duality and Random-Bond Ising Model. Entropy. 2024; 26(8):636. https://doi.org/10.3390/e26080636
Chicago/Turabian StyleSong, Chaoming. 2024. "Kramers–Wannier Duality and Random-Bond Ising Model" Entropy 26, no. 8: 636. https://doi.org/10.3390/e26080636
APA StyleSong, C. (2024). Kramers–Wannier Duality and Random-Bond Ising Model. Entropy, 26(8), 636. https://doi.org/10.3390/e26080636