Refraction of the Two-Photon Multimode Field via a Three-Level Atom
Abstract
:1. Introduction
2. Atomic Interactions with Quantum Fields
2.1. The Atomic Transition Operator
2.2. The Electromagnetic Field Operator
2.2.1. Single-Mode Fields
2.2.2. Multimodal Fields
2.2.3. Multiple Multimodal Fields
3. Hamiltonian of the System
3.1. Electronic Energy
3.2. Field Energy
3.3. Interaction Energy
4. Equations of Motion
4.1. Probability Amplitudes
4.2. Coupling and the Two-Level Atom
5. Adiabatic Solutions
6. The Quantum Beam Splitter and Mach–Zehnder Interferometer
6.1. Optical Instruments
6.2. The Three-Level Atom and Interferometer
7. Numerical Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rostovtsev, Y.; Emerick, J.; Patnaik, A.K. The refractive index of a single atom experienced by a single photon. Results Opt. 2023, 13, 100568. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Schumacher, B. Quantum coding. Phys. Rev. A 1995, 51, 2738. [Google Scholar] [CrossRef] [PubMed]
- Aspelmeyer, M.; Jennewein, T.; Pfennigbauer, M.; Leeb, W.R.; Zeilinger, A. Long-distance quantum communication with entangled photons using satellites. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 1541–1551. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Kok, P.; Lovett, B.W. Introduction to Optical Quantum Information Processing; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Leonhardt, U. Measuring the Quantum State of Light; Cambridge University Press: Cambridge, UK, 1997; Volume 22. [Google Scholar]
- Rivy, H.M.; Aljunid, S.A.; Lassalle, E.; Zheludev, N.I.; Wilkowski, D. Single atom in a superoscillatory optical trap. Commun. Phys. 2023, 6, 155. [Google Scholar] [CrossRef]
- Trapping Single Atoms. Available online: https://xqp.physik.uni-muenchen.de/research/atom_photon/trapping_atoms/index.html#:~:text=Single%2087Rb%20atoms%20are,effect%20upon%20the%20atomic%20state (accessed on 12 November 2024).
- Walther, H.; Varcoe, B.T.H.; Englert, B.-G.; Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 2006, 69, 1325. [Google Scholar] [CrossRef]
- Miller, R.; Northup, T.; Birnbaum, K.; Boca, A.; Boozer, A.; Kimble, H. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 2005, 38, S551. [Google Scholar] [CrossRef]
- Steck, D.A. Rubidium 87 D Line Data. Available online: https://steck.us/alkalidata/ (accessed on 12 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harborth, T.; Rostovtsev, Y. Refraction of the Two-Photon Multimode Field via a Three-Level Atom. Entropy 2025, 27, 71. https://doi.org/10.3390/e27010071
Harborth T, Rostovtsev Y. Refraction of the Two-Photon Multimode Field via a Three-Level Atom. Entropy. 2025; 27(1):71. https://doi.org/10.3390/e27010071
Chicago/Turabian StyleHarborth, Trever, and Yuri Rostovtsev. 2025. "Refraction of the Two-Photon Multimode Field via a Three-Level Atom" Entropy 27, no. 1: 71. https://doi.org/10.3390/e27010071
APA StyleHarborth, T., & Rostovtsev, Y. (2025). Refraction of the Two-Photon Multimode Field via a Three-Level Atom. Entropy, 27(1), 71. https://doi.org/10.3390/e27010071