Dual-Gated Graph Convolutional Recurrent Unit with Integrated Graph Learning (DG3L): A Novel Recurrent Network Architecture with Dynamic Graph Learning for Spatio-Temporal Predictions
Abstract
:1. Introduction
- We provide a framework that effectively combines the Transformer and GRU structures, while also outputting the spatio-temporal dependencies’ feature matrix and spatio-temporal features as results.
- Novel Dual-Gated Graph Convolutional Recurrent Unit (DG-GCRU): We design a new Graph Convolutional Recurrent Unit that integrates long-term information, short-term information, and adaptive embeddings for gated selection.
- New Memory Mechanism for Dynamic Graph Generation: We introduce a memory mechanism to generate a learnable dynamic graph adjacency matrix to optimize the representation learning of the DG-GCRU.
- We conduct multi-step and single-step traffic flow forecasting experiments on six real-world public datasets. The results demonstrate that our model achieves excellent performance on these datasets.
2. Related Work
3. Problem Definition
4. Methodology
4.1. Transformer-Based Memory Graph Bank for Graph Learning
4.2. Dual-Gated Graph Convolutional Recurrent Unit
5. Experiment
5.1. Experimental Setup
5.2. Performance Evaluation
5.3. Ablation Study
- w/o -. This variant removes the Fusion Gate and the reset gate of the F vector from the Spatio-Temporal Transformer.
- w/o -. This variant removes the memory-based dynamic graph generation mechanism.
- w/o -. This variant replaces the Spatio Transformer (one layer) with a GCRU as the encoder.
5.4. Hyperparameter Sensitivity
5.5. Efficiency Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, R.; Yin, D.; Wang, Z.; Wang, Y.; Deng, J.; Liu, H.; Cai, Z.; Deng, J.; Song, X.; Shibasaki, R. Dl-traff: Survey and benchmark of deep learning models for urban traffic prediction. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia, 1–5 November 2021; pp. 4515–4525. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden, 13–19 July 2018; pp. 3634–3640. [Google Scholar] [CrossRef]
- Seo, Y.; Defferrard, M.; Vandergheynst, P.; Bresson, X. Structured sequence modeling with graph convolutional recurrent networks. In Proceedings of the Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13–16 December 2018; Proceedings, Part I 25. Springer: Berlin/Heidelberg, Germany, 2018; pp. 362–373. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Cai, L.; Janowicz, K.; Mai, G.; Yan, B.; Zhu, R. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS 2020, 24, 736–755. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Y.Y.; Liu, Y.; Leskovec, J.; Li, P. Inductive representation learning in temporal networks via causal anonymous walks. arXiv 2021, arXiv:2101.05974. [Google Scholar]
- Sato, K.; Oka, M.; Barrat, A.; Cattuto, C. Dyane: Dynamics-aware node embedding for temporal networks. arXiv 2019, arXiv:1909.05976. [Google Scholar]
- Trivedi, R.; Farajtabar, M.; Biswal, P.; Zha, H. Dyrep: Learning representations over dynamic graphs. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial–temporal Graph Modeling. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, Macao, China, 10–16 August 2019; pp. 1907–1913. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, F.; Lv, Y.; Tan, C.; Liu, W.; Zhang, X.; Wang, F.Y. AdapGL: An Adaptive Graph Learning Algorithm for Traffic Prediction Based on Spatiotemporal Neural Networks. Transp. Res. Part C Emerg. Technol. 2022, 139, 103659. [Google Scholar] [CrossRef]
- Lablack, M.; Shen, Y. Spatio-temporal graph mixformer for traffic forecasting. Expert Syst. Appl. 2023, 228, 120281. [Google Scholar] [CrossRef]
- Li, F.; Feng, J.; Yan, H.; Jin, G.; Yang, F.; Sun, F.; Jin, D.; Li, Y. Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution. Acm Trans. Knowl. Discov. Data Tkdd 2023, 17, 9. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Susmel, R. Autoregressive conditional heteroskedasticity and changes in regime. J. Econom. 1994, 64, 307–333. [Google Scholar] [CrossRef]
- Pan, B.; Demiryurek, U.; Shahabi, C. Utilizing real-world transportation data for accurate traffic prediction. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 595–604. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. In Neural Computation; MIT-Press: Cambridge, MA, USA, 1997; Volume 9, pp. 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25 October 2014; Wu, D., Carpuat, M., Carreras, X., Vecchi, E.M., Eds.; Association for Computational Linguistics: Doha, Qatar, 2014; pp. 103–111. [Google Scholar] [CrossRef]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based spatial–temporal Graph Convolutional Networks for traffic flow forecasting. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Washington, DC, USA, 2019. AAAI’19/IAAI’19/EAAI’19. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, F.; Fang, Y.; Luo, H.; Wang, C. Memory attention enhanced graph convolution long short-term memory network for traffic forecasting. Int. J. Intell. Syst. 2022, 37, 6555–6576. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Proceedings of the International Conference on Learning Representations (ICLR ’18), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17804–17815. [Google Scholar]
- Ye, J.; Sun, L.; Du, B.; Fu, Y.; Xiong, H. Coupled layer-wise graph convolution for transportation demand prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 4617–4625. [Google Scholar]
- Cao, D.; Wang, Y.; Duan, J.; Zhang, C.; Zhu, X.; Huang, C.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; et al. Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17766–17778. [Google Scholar]
- Zhang, H.; Wang, H.; Zhang, X.; Gong, L. Research on Traffic Flow Forecasting Based on Dynamic Spatial–temporal Transformer. Transp. Res. Rec. 2024, 2678, 301–313. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 6–10 July 2020; KDD ’20. pp. 753–763. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, Z.; Wei, W.; Wang, F.; Xu, Y.; Cao, X.; Jensen, C.S. Decoupled dynamic spatial–temporal graph neural network for traffic forecasting. Proc. VLDB Endow. 2022, 15, 2733–2746. [Google Scholar] [CrossRef]
- Peng, H.; Du, B.; Liu, M.; Liu, M.; Ji, S.; Wang, S.; Zhang, X.; He, L. Dynamic Graph Convolutional Network for Long-Term Traffic Flow Prediction with Reinforcement Learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; p. 9. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-variants of Gated Recurrent Unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated Recurrent Neural Networks on sequence modeling. In Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QU, Canada, 13 December 2014. [Google Scholar]
- Saravanan, S.; Venkatachalapathy, K. A deep hybrid model for traffic flow prediction using CNN-rGRU. Int. J. Anal. Exp. Modal Anal. 2019, 11, 1554–1560. [Google Scholar]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Z.; Yong, J.; Jeph, P.; Chen, Q.; Kobayashi, Y.; Song, X.; Fukushima, S.; Suzumura, T. Spatio-temporal meta-graph learning for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, 7–14 February 2023; Volume 37, pp. 8078–8086. [Google Scholar]
- Zheng, C.; Fan, X.; Wang, C.; Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Prediction. Proc. AAAI Conf. Artif. Intell. 2020, 34, 1234–1241. [Google Scholar] [CrossRef]
- Liu, H.; Dong, Z.; Jiang, R.; Deng, J.; Chen, Q.; Song, X. STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformers SOTA for Traffic Forecasting. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM), Birmingham, UK, 21–25 October 2023; pp. 21–25. [Google Scholar]
- van den Oord, A.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. arXiv 2018, arXiv:1807.03748. [Google Scholar]
- Zhang, Q.; Huang, C.; Xia, L.; Wang, Z.; Li, Z.; Yiu, S. Automated Spatio-Temporal Graph Contrastive Learning. In Proceedings of the ACM Web Conference 2023, Austin, TX, USA, 30 April–4 May 2023; pp. 295–305. [Google Scholar] [CrossRef]
- Park, H.; Noh, J.; Ham, B. Learning Memory-Guided Normality for Anomaly Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 14360–14369. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Shao, Z.; Wang, F.; Xu, Y.; Wei, W.; Yu, C.; Zhang, Z.; Yao, D.; Sun, T.; Jin, G.; Cao, X.; et al. Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis. IEEE Trans. Knowl. Data Eng. 2024, 37, 291–305. [Google Scholar] [CrossRef]
- Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial–temporal synchronous Graph Convolutional Networks: A new framework for spatial–temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 914–921. [Google Scholar]
Dataset | #Spatial Units | Time Interval | #Timesteps | Start Time | End Time |
---|---|---|---|---|---|
METR-LA | 207 | 5 min | 34,272 | 3/2012 | 6/2012 |
PEMS-BAY | 325 | 5 min | 52,116 | 1/2017 | 5/2017 |
PEMS03 | 358 | 5 min | 26,209 | 5/2012 | 7/2012 |
PEMS04 | 307 | 5 min | 16,992 | 1/2018 | 2/2018 |
PEMS07 | 883 | 5 min | 28,224 | 5/2017 | 8/2017 |
PEMS08 | 170 | 5 min | 17,856 | 7/2016 | 8/2016 |
Datasets | Methods | Overall | Horizon 3 | Horizon 6 | Horizon 12 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | ||
PEMS03 | DCRNN | 15.476 | 27.579 | 15.80% | 14.239 | 25.096 | 15.10% | 15.486 | 27.799 | 15.77% | 17.492 | 30.778 | 17.61% |
STGCN | 15.947 | 27.324 | 15.58% | 14.854 | 25.520 | 14.44% | 15.884 | 27.379 | 15.46% | 17.763 | 29.905 | 17.14% | |
GWNet | 14.522 | 25.111 | 15.36% | 13.379 | 23.107 | 14.64% | 14.525 | 25.164 | 15.30% | 16.273 | 27.805 | 17.05% | |
STNorm | 15.341 | 25.909 | 14.42% | 14.304 | 23.930 | 13.61% | 15.573 | 26.362 | 14.27% | 16.860 | 28.403 | 16.01% | |
MTGNN | 14.812 | 25.074 | 14.97% | 13.777 | 23.629 | 14.28% | 14.820 | 25.161 | 14.77% | 16.485 | 27.758 | 16.53% | |
STWave | 14.904 | 26.122 | 15.41% | 13.683 | 24.088 | 14.36% | 14.786 | 25.929 | 15.14% | 16.474 | 28.539 | 16.82% | |
DGCRN | 14.794 | 26.525 | 15.13% | 13.695 | 24.475 | 14.68% | 14.888 | 26.819 | 15.19% | 16.539 | 29.262 | 16.15% | |
MegaCRN | 14.683 | 26.101 | 15.80% | 13.572 | 24.346 | 15.16% | 14.821 | 26.383 | 15.88% | 16.467 | 28.733 | 17.37% | |
D2STGNN | 14.620 | 25.891 | 15.36% | 13.501 | 23.843 | 14.46% | 14.635 | 26.148 | 15.24% | 16.364 | 28.507 | 16.80% | |
STAEformer | 14.706 | 26.046 | 15.39% | 13.692 | 23.542 | 14.38% | 14.972 | 26.133 | 15.35% | 16.831 | 29.288 | 17.11% | |
DG3L | 14.510 | 25.689 | 14.38% | 13.201 | 23.533 | 13.48% | 14.521 | 25.623 | 14.39% | 16.324 | 28.331 | 16.06% | |
PEMS04 | DCRNN | 19.652 | 31.174 | 13.73% | 18.457 | 29.405 | 12.91% | 19.663 | 31.192 | 13.73% | 21.571 | 33.792 | 15.22% |
STGCN | 19.729 | 31.445 | 13.66% | 18.788 | 29.881 | 13.27% | 19.702 | 31.419 | 13.78% | 21.369 | 33.849 | 14.39% | |
GWNet | 18.821 | 30.157 | 13.18% | 17.879 | 28.777 | 12.49% | 18.828 | 30.289 | 13.06% | 20.337 | 32.212 | 14.61% | |
STNorm | 19.196 | 32.195 | 12.96% | 18.424 | 30.521 | 12.56% | 19.303 | 32.564 | 13.08% | 20.485 | 34.378 | 13.63% | |
MTGNN | 19.196 | 31.463 | 13.41% | 18.325 | 29.864 | 12.78% | 19.294 | 31.679 | 13.55% | 20.605 | 33.758 | 14.25% | |
STWave | 18.228 | 29.975 | 12.15% | 17.469 | 28.703 | 11.67% | 18.179 | 29.963 | 12.06% | 19.608 | 31.763 | 12.93% | |
DGCRN | 18.961 | 30.899 | 12.94% | 17.962 | 29.103 | 12.33% | 19.002 | 30.984 | 12.98% | 20.597 | 33.453 | 14.00% | |
MegaCRN | 18.780 | 30.275 | 13.13% | 17.743 | 28.676 | 12.54% | 18.825 | 30.339 | 13.21% | 20.446 | 32.651 | 14.23% | |
D2STGNN | 18.329 | 30.043 | 12.52% | 17.565 | 28.626 | 12.13% | 18.367 | 30.301 | 12.64% | 19.600 | 32.078 | 13.44% | |
STAEformer | 18.207 | 30.391 | 12.39% | 17.475 | 28.998 | 11.95% | 18.232 | 30.512 | 12.40% | 19.320 | 32.279 | 13.14% | |
DG3L | 18.216 | 29.817 | 12.41% | 17.473 | 28.832 | 11.83% | 18.241 | 30.235 | 12.39% | 19.520 | 32.593 | 13.44% | |
PEMS07 | DCRNN | 21.433 | 34.910 | 9.02% | 19.613 | 31.601 | 8.29% | 21.410 | 34.898 | 8.97% | 24.431 | 39.562 | 10.32% |
STGCN | 22.066 | 35.669 | 9.41% | 20.549 | 32.800 | 8.84% | 22.001 | 35.539 | 9.36% | 24.688 | 39.942 | 10.44% | |
GWNet | 20.356 | 33.346 | 8.67% | 18.855 | 30.814 | 8.08% | 20.374 | 33.409 | 8.61% | 22.777 | 36.963 | 9.77% | |
STNorm | 20.644 | 34.996 | 8.72% | 19.240 | 31.757 | 8.15% | 20.783 | 35.224 | 8.80% | 22.805 | 38.953 | 9.70% | |
MTGNN | 21.343 | 34.326 | 9.44% | 19.444 | 31.254 | 8.34% | 21.258 | 34.224 | 9.23% | 24.509 | 38.767 | 11.43% | |
STWave | 19.919 | 33.876 | 8.40% | 18.585 | 30.757 | 7.84% | 19.917 | 33.198 | 8.41% | 21.905 | 36.392 | 9.40% | |
DGCRN | 23.328 | 36.491 | 10.51% | 19.548 | 31.275 | 8.48% | 22.202 | 34.866 | 9.97% | 30.626 | 45.671 | 14.28% | |
MegaCRN | 22.288 | 34.954 | 10.45% | 20.279 | 31.789 | 9.65% | 22.241 | 34.903 | 10.51% | 25.452 | 39.402 | 11.88% | |
D2STGNN | 19.566 | 32.631 | 8.19% | 18.164 | 30.111 | 7.68% | 19.691 | 32.678 | 8.20% | 21.555 | 36.245 | 9.06% | |
STAEformer | 19.394 | 32.724 | 8.10% | 18.091 | 30.247 | 7.57% | 19.398 | 32.745 | 8.07% | 21.446 | 36.197 | 8.99% | |
DG3L | 19.593 | 33.068 | 8.17% | 18.077 | 30.161 | 7.59% | 19.578 | 33.021 | 8.13% | 21.798 | 37.012 | 9.09% | |
PEMS08 | DCRNN | 15.199 | 24.199 | 10.23% | 14.140 | 22.198 | 9.51% | 15.217 | 24.264 | 10.19% | 16.886 | 26.925 | 11.51% |
STGCN | 16.171 | 25.392 | 10.47% | 15.101 | 23.470 | 9.88% | 16.066 | 25.338 | 10.44% | 18.020 | 28.199 | 11.40% | |
GWNet | 14.684 | 23.610 | 9.74% | 13.696 | 21.764 | 9.02% | 14.675 | 23.597 | 9.77% | 16.181 | 26.109 | 10.59% | |
STNorm | 15.413 | 24.912 | 9.84% | 14.457 | 22.808 | 9.11% | 15.484 | 25.049 | 9.96% | 16.910 | 27.613 | 11.07% | |
MTGNN | 15.231 | 24.062 | 9.88% | 14.256 | 22.277 | 9.10% | 15.200 | 24.111 | 9.71% | 16.831 | 26.577 | 11.25% | |
STWave | 13.896 | 24.175 | 9.14% | 13.021 | 22.316 | 8.63% | 13.804 | 24.246 | 9.09% | 15.021 | 26.237 | 9.94% | |
DGCRN | 14.884 | 23.775 | 9.92% | 13.693 | 21.695 | 8.96% | 14.843 | 23.791 | 9.81% | 16.811 | 26.645 | 11.45% | |
MegaCRN | 16.244 | 25.265 | 11.01% | 14.641 | 22.738 | 9.93% | 16.127 | 25.143 | 10.65% | 18.910 | 29.011 | 12.32% | |
D2STGNN | 14.151 | 23.583 | 9.11% | 13.206 | 21.539 | 8.50% | 14.164 | 23.567 | 9.10% | 15.498 | 26.103 | 10.05% | |
STAEformer | 13.431 | 23.313 | 8.97% | 12.545 | 21.429 | 8.41% | 13.430 | 23.315 | 8.92% | 14.787 | 25.828 | 9.74% | |
DG3L | 13.720 | 23.088 | 8.91% | 12.742 | 21.229 | 8.38% | 13.686 | 23.078 | 8.87% | 15.107 | 25.632 | 9.92% | |
METR-LA | DCRNN | 3.039 | 6.248 | 8.34% | 2.676 | 5.188 | 6.88% | 3.076 | 6.291 | 8.43% | 3.560 | 7.490 | 10.41% |
STGCN | 3.093 | 6.268 | 8.35% | 2.742 | 5.268 | 7.08% | 3.133 | 6.321 | 8.48% | 3.587 | 7.434 | 10.09% | |
GWNet | 3.031 | 6.121 | 8.14% | 2.689 | 5.143 | 6.89% | 3.072 | 6.176 | 8.28% | 3.510 | 7.257 | 9.88% | |
STNorm | 3.144 | 6.475 | 8.77% | 2.817 | 5.523 | 7.51% | 3.204 | 6.590 | 9.00% | 3.594 | 7.540 | 10.42% | |
MTGNN | 3.021 | 6.160 | 8.18% | 2.685 | 5.175 | 6.88% | 3.056 | 6.194 | 8.28% | 3.492 | 7.294 | 10.00% | |
STWave | 3.102 | 6.465 | 8.79% | 2.794 | 5.509 | 7.42% | 3.144 | 6.527 | 8.86% | 3.503 | 7.471 | 10.44% | |
DGCRN | 3.067 | 6.333 | 8.08% | 2.678 | 5.173 | 6.75% | 3.101 | 6.371 | 8.19% | 3.606 | 7.636 | 9.90% | |
MegaCRN | 2.962 | 6.043 | 8.00% | 2.611 | 4.996 | 6.68% | 2.998 | 6.073 | 8.12% | 3.461 | 7.247 | 9.84% | |
D2STGNN | 2.869 | 5.895 | 7.83% | 2.558 | 4.953 | 6.54% | 2.904 | 5.938 | 7.92% | 3.336 | 7.032 | 9.71% | |
STAEformer | 2.956 | 5.999 | 7.93% | 2.698 | 5.203 | 7.00% | 2.993 | 6.072 | 8.19% | 3.341 | 7.022 | 9.68% | |
DG3L | 2.899 | 5.973 | 7.92% | 2.554 | 4.971 | 6.51% | 2.927 | 5.984 | 7.90% | 3.390 | 7.210 | 9.72% | |
PEMS-BAY | DCRNN | 1.592 | 3.700 | 3.59% | 1.312 | 2.765 | 2.73% | 1.652 | 3.765 | 3.72% | 1.970 | 4.615 | 4.71% |
STGCN | 1.619 | 3.691 | 3.67% | 1.351 | 2.829 | 2.87% | 1.680 | 3.777 | 3.81% | 1.982 | 4.548 | 4.70% | |
GWNet | 1.598 | 3.702 | 3.52% | 1.306 | 2.753 | 2.68% | 1.656 | 3.776 | 3.65% | 1.992 | 4.613 | 4.60% | |
STNorm | 1.578 | 3.653 | 3.49% | 1.329 | 2.826 | 2.76% | 1.649 | 3.782 | 3.64% | 1.913 | 4.442 | 4.45% | |
MTGNN | 1.596 | 3.665 | 3.51% | 1.327 | 2.792 | 2.77% | 1.654 | 3.747 | 3.65% | 1.971 | 4.541 | 4.49% | |
STWave | 1.576 | 3.609 | 3.53% | 1.333 | 2.840 | 2.73% | 1.631 | 3.699 | 3.65% | 1.916 | 4.361 | 4.48% | |
DGCRN | 1.565 | 3.619 | 3.54% | 1.300 | 2.739 | 2.71% | 1.621 | 3.694 | 3.67% | 1.933 | 4.489 | 4.60% | |
MegaCRN | 1.558 | 3.635 | 3.53% | 1.292 | 2.723 | 2.70% | 1.616 | 3.715 | 3.66% | 1.916 | 4.505 | 4.60% | |
D2STGNN | 1.516 | 3.533 | 3.43% | 1.259 | 2.660 | 2.63% | 1.574 | 3.626 | 3.57% | 1.863 | 4.348 | 4.42% | |
STAEformer | 1.564 | 3.583 | 3.55% | 1.325 | 2.794 | 2.82% | 1.630 | 3.666 | 3.72% | 1.878 | 4.306 | 4.41% | |
DG3L | 1.539 | 3.571 | 3.49% | 1.290 | 2.718 | 2.68% | 1.601 | 3.652 | 3.64% | 1.871 | 4.333 | 4.42% |
Datasets | PEMS03 | METR-LA | PEMS-BAY | |||
---|---|---|---|---|---|---|
Metric | MAE | RMSE | MAE | RMSE | MAE | RMSE |
w/o Dual-Gate | 14.647 | 26.329 | 2.947 | 6.094 | 1.562 | 3.607 |
w/o Memory Graph-Bank | 15.492 | 27.936 | 3.117 | 6.466 | 1.580 | 3.683 |
w/o SpatioTransformer-Encoder | 14.543 | 26.156 | 2.913 | 6.017 | 1.541 | 3.579 |
Ours | 14.510 | 25.689 | 2.899 | 5.973 | 1.539 | 3.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Z.; Pi, S.; Zhang, H.; Pi, J. Dual-Gated Graph Convolutional Recurrent Unit with Integrated Graph Learning (DG3L): A Novel Recurrent Network Architecture with Dynamic Graph Learning for Spatio-Temporal Predictions. Entropy 2025, 27, 99. https://doi.org/10.3390/e27020099
Wang Y, Zhang Z, Pi S, Zhang H, Pi J. Dual-Gated Graph Convolutional Recurrent Unit with Integrated Graph Learning (DG3L): A Novel Recurrent Network Architecture with Dynamic Graph Learning for Spatio-Temporal Predictions. Entropy. 2025; 27(2):99. https://doi.org/10.3390/e27020099
Chicago/Turabian StyleWang, Yuxuan, Zhouyuan Zhang, Shu Pi, Haishan Zhang, and Jiatian Pi. 2025. "Dual-Gated Graph Convolutional Recurrent Unit with Integrated Graph Learning (DG3L): A Novel Recurrent Network Architecture with Dynamic Graph Learning for Spatio-Temporal Predictions" Entropy 27, no. 2: 99. https://doi.org/10.3390/e27020099
APA StyleWang, Y., Zhang, Z., Pi, S., Zhang, H., & Pi, J. (2025). Dual-Gated Graph Convolutional Recurrent Unit with Integrated Graph Learning (DG3L): A Novel Recurrent Network Architecture with Dynamic Graph Learning for Spatio-Temporal Predictions. Entropy, 27(2), 99. https://doi.org/10.3390/e27020099