Statistical Assessment of Solvent Mixture Models Used for Separation of Biological Active Compounds
Abstract
:Introduction
Material and Methods
Experimental Measurements
No. | TCM:Prop:PE* | L | l1 | w1 | l2 | w2 | l3 | w3 | l4 | w4 | l5 | w5 |
1 | 33:33:33 | 8.70 | 6.65 | 0.48 | 7.36 | 0.35 | 7.26 | 0.23 | 4.00 | 0.38 | 4.76 | 0.98 |
2 | 0:0:100 | 8.83 | 0.00 | 0.42 | 0.00 | 0.44 | 0.00 | 0.22 | 0.00 | 0.25 | 0.00 | 0.21 |
3 | 0:100:0 | 8.75 | 8.29 | 0.37 | 8.49 | 0.26 | 8.49 | 0.11 | 7.93 | 0.28 | 7.79 | 0.59 |
4 | 100:0:0 | 9.00 | 1.21 | 0.62 | 2.05 | 0.45 | 1.43 | 0.41 | 0.05 | 0.23 | 0.19 | 0.30 |
5 | 50:0:50 | 8.93 | 0.54 | 0.56 | 0.98 | 0.38 | 0.68 | 0.27 | 0.00 | 0.26 | 0.00 | 0.25 |
6 | 50:50:0 | 8.84 | 6.71 | 0.55 | 7.12 | 0.31 | 7.05 | 0.20 | 5.31 | 0.36 | 5.56 | 0.69 |
7 | 0:50:50 | 8.76 | 8.44 | 0.36 | 8.56 | 0.11 | 8.56 | 0.05 | 7.35 | 0.31 | 7.20 | 1.38 |
8 | 10:10:80 | 8.86 | 3.49 | 0.60 | 4.71 | 0.42 | 4.51 | 0.28 | 0.53 | 0.27 | 0.64 | 1.41 |
9 | 80:10:10 | 8.87 | 5.08 | 0.69 | 6.71 | 0.51 | 6.06 | 0.34 | 1.01 | 0.32 | 2.32 | 0.63 |
10 | 10:80:10 | 8.82 | 8.24 | 0.52 | 8.41 | 0.24 | 8.46 | 0.14 | 7.38 | 0.32 | 7.27 | 0.96 |
11 | 55:19:26 | 18.95 | 3.43 | 0.82 | 5.86 | 1.16 | 11.52 | 1.43 | 13.44 | 1.25 | 14.38 | 1.32 |
Statistical Validation
Parameter | Formula | Eq. | Notes | |
---|---|---|---|---|
Retardation factors (RF) matrix | RF(i,e) = l(i,e)/l(e) | (2) | i | a separated compound |
e | the mobile phase | |||
l(i,e) | migration distance of i in e | |||
l(e) | migration distance of e | |||
Ordered RF | RFO(i,e) = 2·(lo(i+1,e)-lo(i,e))/l(e) | (3) | lo(i,e) | ith migration coordinate in the list of migration, ordered by length |
Resolution matrix | RSM(i,j,e) = 2·(l(i,e)-l(j,e))/(w(i,e)+w(j,e)) | (4) | j | a separated compound |
w(i,e) | spot width of i | |||
w(j,e) | spot width of j | |||
Resolution of adjacent spots matrix | RSO(i,e) = 2·(lo(i+1,e)-lo(i,e))/(w(i+1,e)+w(i,e)) | (5) | lo(i,e) | ith migration coordinate in the list of migration, ordered by length |
Number of components | nc(e) = Σi 1 | lo(i+1,e)-lo(i,e)>(w(i+1,e)+w(i,e))/8 | (6) | nc(e) | number of components observed in e at least 1σ (σ = standard deviation) |
Maximum number of components | mnc = maxe nc(e) | (7) | mnc | from all experimented mobile phases (or previous knowledge) |
Retardation factors deviation | RFD(e) = √(∑i (ΔRF(i,e)-1/mnc)2/√nc(e)(nc(e)+1) | (8) | 1/mnc | theoretical difference between two retardation factors |
ΔRF(i,e) | RFO(i+1,e)-RFO(i,e) | |||
Informational energy | IEne(e) = mnc2 - Σi (ni)2 | (9) | ni | number of compounds that migrate into ith equidistant interval from mnc intervals |
Informational entropy | IEnt(e) = Σi (ni)log2(ni) | (10) | ||
Resolution sum | RSS(e) = ∑i RSO(i,e) | (11) | RSS(e) | average indicator for separation |
Effective plates number squared root | QNeff(e) = 4·l(e)/(Σi w(e,i)) | (12) | QNeff(e) | average indicator for a hypothetic quantitative analysis |
Resolution divided by the number of effective plates | RSP(e) = 25·RSS(e)/QNeff(e) | (13) | RSP(e) | composite indicator for separation expressed as proportion; note that 4·RSS(e) → QNeff(e) for an ideal separation |
Average resolution for separation | RSA(e) = RSS(e)/nc(e) | (14) | RSA(e) | average indicator for separation |
Relative resolution product | RRP(e) = Πi RSO(i,e)/ Σi RSO(i,e) | (15) | RRP(e) | average indicator for separation |
Minkowski type mean of resolutions | RSR(e) = (∑i (RSO(i,e))1/p/nc(e))p; p = 2 | (16) | RSR(e) | is better descriptor for separation than RSA |
Quality factor | QF(e) = mini,j RSM(i,j,e) = mini RSO(i,e) | (17) | QF(e) | worst one define the resolution of separation |
Results and Discussion
No. | Experimental | Estimated by Eq(1.1) | Estimated by Eq(1.2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AI1 | AI2 | AI3 | AI4 | AI5 | AI1 | AI2 | AI3 | AI4 | AI5 | AI1 | AI2 | AI3 | AI4 | AI5 | |
1 | 0.764 | 0.845 | 0.834 | 0.460 | 0.547 | 0.006 | 0.021 | 0.134 | 0.159 | 0.228 | |||||
2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||||||||
3 | 0.947 | 0.970 | 0.970 | 0.906 | 0.890 | ||||||||||
4 | 0.134 | 0.228 | 0.159 | 0.006 | 0.021 | ||||||||||
5 | 0.060 | 0.110 | 0.076 | 0.000 | 0.000 | ||||||||||
6 | 0.759 | 0.805 | 0.798 | 0.601 | 0.629 | ||||||||||
7 | 0.963 | 0.977 | 0.977 | 0.839 | 0.822 | ||||||||||
8 | 0.394 | 0.532 | 0.509 | 0.060 | 0.072 | 0.291 | 0.314 | 0.308 | 0.203 | 0.216 | 0.215 | 0.219 | 0.271 | 0.279 | 0.284 |
9 | 0.573 | 0.756 | 0.683 | 0.114 | 0.262 | 0.309 | 0.393 | 0.347 | 0.139 | 0.174 | 0.157 | 0.172 | 0.289 | 0.317 | 0.364 |
10 | 0.934 | 0.954 | 0.959 | 0.837 | 0.824 | 1.017 | 1.052 | 1.053 | 0.878 | 0.891 | 0.882 | 0.903 | 0.997 | 1.024 | 1.022 |
11 | 0.181 | 0.309 | 0.608 | 0.709 | 0.759 | 0.505 | 0.591 | 0.565 | 0.253 | 0.324 | 0.309 | 0.323 | 0.438 | 0.465 | 0.491 |
Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|
Eq(1.1), n = 20 | |||
Pearson | r = 0.7214 | 3.31·10-4 | tPrs,1 = 4.42 |
Spearman | ρ = 0.7789 | 5.19·10-5 | tSpm,1 = 5.27 |
Semi-Q | rsQ = 0.7496 | 1.42·10-4 | tsQ = 4.80 |
Kendall τa | τKen,a = 0.6316 | 9.89·10-5 | ZKen,τa = 3.89 |
Kendall τb | τKen,b = 0.6316 | 9.89·10-5 | ZKen,τb = 3.89 |
Kendall τc | τKen,c = 0.6000 | 2.17·10-4 | ZKen,τc = 3.70 |
Gamma | Γ = 0.6316 | 1.39·10-2 | ZΓ = 2.46 |
Eq (1.2), n = 25 | |||
Pearson | r = 0.8292 | 3.02·10-7 | tPrs,1 = 7.11 |
Spearman | ρ = 0.9008 | 8.45·10-10 | tSpm,1 = 9.95 |
Semi-Q | rsQ = 0.8642 | 2.58·10-8 | tsQ = 8.24 |
Kendall τa | τKen,a = 0.7667 | 7.80·10-8 | ZKen,τa = 5.37 |
Kendall τb | τKen,b = 0.7667 | 7.80·10-8 | ZKen,τb = 5.37 |
Kendall τc | τKen,c = 0.7360 | 2.51·10-7 | ZKen,τc = 5.16 |
Gamma | Γ = 0.7667 | 3.82·10-5 | ZΓ = 4.12 |
No. | Experimental peak | Estimated peak by Eq(1.1) | Estimated peak by Eq(1.2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 1st | 2nd | 3rd | 4th | 5th | 1st | 2nd | 3rd | 4th | 5th | |
1 | 0.460 | 0.547 | 0.764 | 0.834 | 0.845 | 0.006 | 0.021 | 0.134 | 0.159 | 0.228 | |||||
2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||||||||
3 | 0.890 | 0.906 | 0.947 | 0.970 | 0.970 | ||||||||||
4 | 0.006 | 0.021 | 0.134 | 0.159 | 0.228 | ||||||||||
5 | 0.000 | 0.000 | 0.060 | 0.076 | 0.110 | ||||||||||
6 | 0.601 | 0.629 | 0.759 | 0.798 | 0.805 | ||||||||||
7 | 0.822 | 0.839 | 0.963 | 0.977 | 0.977 | ||||||||||
8 | 0.060 | 0.072 | 0.394 | 0.509 | 0.532 | 0.200 | 0.219 | 0.291 | 0.308 | 0.314 | 0.215 | 0.219 | 0.271 | 0.279 | 0.284 |
9 | 0.114 | 0.262 | 0.573 | 0.683 | 0.756 | 0.141 | 0.172 | 0.309 | 0.347 | 0.393 | 0.157 | 0.172 | 0.289 | 0.317 | 0.364 |
10 | 0.824 | 0.837 | 0.934 | 0.954 | 0.959 | 0.866 | 0.902 | 1.017 | 1.053 | 1.052 | 0.882 | 0.903 | 0.997 | 1.024 | 1.022 |
11 | 0.181 | 0.309 | 0.608 | 0.709 | 0.759 | 0.256 | 0.321 | 0.505 | 0.565 | 0.591 | 0.309 | 0.323 | 0.438 | 0.465 | 0.491 |
Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|
Eq(1.1), n = 20 | |||
Pearson | r = 0.8654 | 8.38·10-7 | tPrs,1 = 7.33 |
Spearman | ρ = 0.9579 | 3.39·10-11 | tSpm,1 = 14.15 |
Semi-Q | rsQ = 0.9105 | 2.53·10-8 | tsQ = 9.34 |
Kendall τa | τKen,a = 0.8526 | 1.47·10-7 | ZKen,τa = 5.26 |
Kendall τb | τKen,b = 0.8526 | 1.47·10-7 | ZKen,τb = 5.26 |
Kendall τc | τKen,c = 0.8100 | 5.94·10-7 | ZKen,τc = 4.99 |
Gamma | Γ = 0.8526 | 7.42·10-6 | ZΓ = 4.48 |
Eq(1.2), n = 25 | |||
Pearson | r = 0.8292 | 3.02·10-7 | tPrs,1 = 7.11 |
Spearman | ρ = 0.9008 | 8.45·10-10 | tSpm,1 = 9.95 |
Semi-Q | rsQ = 0.8642 | 2.58·10-8 | tsQ = 8.24 |
Kendall τa | τKen,a = 0.7667 | 7.80·10-8 | ZKen,τa = 5.37 |
Kendall τb | τKen,b = 0.7667 | 7.80·10-8 | ZKen,τb = 5.37 |
Kendall τc | τKen,c = 0.7360 | 2.51·10-7 | ZKen,τc = 5.16 |
Gamma | Γ = 0.7667 | 3.82·10-5 | ZΓ = 4.12 |
Eq(1.1), n = 20 | |||||||
Pearson | 1.0000 | 0.3510 | 0.7287 | 0.5805 | 0.5805 | 0.4346 | 0.5805 |
Spearman | 0.0824 | 1.0000 | 0.5559 | 0.1408 | 0.1408 | 0.0903 | 0.1408 |
Semi-Q | 0.2305 | 1.0000 | 0.3699 | 0.3699 | 0.2614 | 0.3699 | |
Kendall τa | 0.2468 | 1.0000 | 0.3699 | 0.2614 | 0.3699 | ||
Kendall τb | 1.0000 | 1.0000 | 1.0000 | 0.8178 | |||
Kendall τc | 0.5803 | 1.0000 | 0.8178 | ||||
Gamma | 0.5803 | 1.0000 |
No. | AI1-AI2 | AI1-AI3 | AI1-AI4 | AI1-AI5 | AI2-AI3 | AI2-AI4 | AI2-AI5 | AI3-AI4 | AI3-AI5 | AI4-AI5 |
---|---|---|---|---|---|---|---|---|---|---|
Experimental | ||||||||||
1 | 1.687 | 1.718 | 6.163 | 2.589 | 0.310 | 9.178 | 3.895 | 10.689 | 4.132 | 1.118 |
2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
3 | 0.635 | 0.833 | 1.108 | 1.042 | 0.000 | 2.074 | 1.647 | 2.872 | 2.000 | 0.322 |
4 | 1.570 | 0.427 | 2.729 | 2.217 | 1.442 | 5.882 | 4.960 | 4.313 | 3.493 | 0.528 |
5 | 0.936 | 0.337 | 1.317 | 1.333 | 0.923 | 3.063 | 3.111 | 2.566 | 2.615 | 0.000 |
6 | 0.953 | 0.907 | 3.077 | 1.855 | 0.275 | 5.403 | 3.120 | 6.214 | 3.348 | 0.476 |
7 | 0.511 | 0.585 | 3.254 | 1.425 | 0.000 | 5.762 | 1.826 | 6.722 | 1.902 | 0.178 |
8 | 2.392 | 2.318 | 6.805 | 2.836 | 0.571 | 12.116 | 4.448 | 14.473 | 4.580 | 0.131 |
9 | 2.717 | 1.903 | 8.059 | 4.182 | 1.529 | 13.735 | 7.702 | 15.303 | 7.711 | 2.758 |
10 | 0.447 | 0.667 | 2.048 | 1.311 | 0.263 | 3.679 | 1.900 | 4.696 | 2.164 | 0.172 |
11 | 2.455 | 7.191 | 9.671 | 10.234 | 4.371 | 6.290 | 6.871 | 1.433 | 2.080 | 0.732 |
Estimated by Eq(1.1) | ||||||||||
8 | 0.512 | 0.456 | 1.968 | 0.891 | 0.178 | 3.211 | 1.402 | 3.639 | 1.409 | 0.207 |
9 | 1.515 | 0.786 | 3.447 | 2.253 | 1.062 | 6.405 | 4.542 | 5.912 | 3.770 | 0.586 |
10 | 0.872 | 1.082 | 3.081 | 1.620 | -0.004 | 5.028 | 2.327 | 6.269 | 2.734 | 0.521 |
11 | 1.681 | 1.380 | 5.042 | 2.480 | 0.677 | 7.971 | 4.292 | 8.665 | 4.142 | 0.901 |
Estimated by Eq(1.2) | ||||||||||
1 | 0.822 | 0.673 | 2.973 | 1.688 | 0.372 | 5.440 | 2.847 | 6.091 | 2.885 | 0.196 |
8 | 0.325 | 0.231 | 1.279 | 0.696 | 0.191 | 2.404 | 1.176 | 2.646 | 1.14 | 0.008 |
9 | 1.328 | 0.56 | 2.758 | 2.058 | 1.076 | 5.597 | 4.316 | 4.919 | 3.501 | 0.387 |
10 | 0.685 | 0.857 | 2.392 | 1.426 | 0.01 | 4.22 | 2.101 | 5.276 | 2.465 | 0.322 |
11 | 1.046 | 0.613 | 2.702 | 1.819 | 0.722 | 5.228 | 3.523 | 5.292 | 3.228 | 0.225 |
Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|
Estimated by Eq(1.1), n = 40 | |||
Pearson | r = 0.5173 | 6.30·10-4 | tPrs,1 = 3.72 |
Spearman | ρ = 0.6214 | 1.88·10-5 | tSpm,1 = 4.89 |
Semi-Q | rsQ = 0.5670 | 1.36·10-4 | tsQ = 4.24 |
Kendall τa | τKen,a = 0.4462 | 5.02·10-5 | ZKen,τa = 4.05 |
Kendall τb | τKen,b = 0.4462 | 5.02·10-5 | ZKen,τb = 4.05 |
Kendall τc | τKen,c = 0.4350 | 7.71·10-5 | ZKen,τc = 3.95 |
Gamma | Γ = 0.4462 | 7.05·10-2 | ZΓ = 1.81 |
Estimated by Eq(1.2), n = 50 | |||
Pearson | r = 0.6185 | 1.70·10-6 | tPrs,1 = 5.45 |
Spearman | ρ = 0.6786 | 6.12·10-8 | tSpm,1 = 6.40 |
Semi-Q | rsQ = 0.6478 | 3.67·10-7 | tsQ = 5.89 |
Kendall τa | τKen,a = 0.4939 | 4.18·10-7 | ZKen,τa = 5.06 |
Kendall τb | τKen,b = 0.4939 | 4.18·10-7 | ZKen,τb = 5.06 |
Kendall τc | τKen,c = 0.4840 | 7.07·10-7 | ZKen,τc = 4.96 |
Gamma | Γ = 0.4939 | 1.24·10-2 | ZΓ = 2.50 |
No. | Experimental peak | Estimated peak by Eq(1.1) | Estimated peak by Eq(1.2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 1st | 2nd | 3rd | 4th | 5th | 1st | 2nd | 3rd | 4th | 5th | |
1 | 1.118 | 2.589 | 1.718 | 0.310 | 0.845 | 0.196 | 2.487 | 0.673 | 0.372 | 0.196 | |||||
2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||||||||||
3 | 0.322 | 1.108 | 0.833 | 0.000 | 0.970 | ||||||||||
4 | 0.528 | 2.217 | 0.427 | 1.442 | 0.228 | ||||||||||
5 | 0.000 | 1.317 | 0.337 | 0.923 | 0.110 | ||||||||||
6 | 0.476 | 1.855 | 0.907 | 0.275 | 0.805 | ||||||||||
7 | 0.178 | 3.254 | 0.585 | 0.000 | 0.977 | ||||||||||
8 | 0.131 | 2.836 | 2.318 | 0.571 | 0.532 | 0.207 | 1.293 | 0.456 | 0.178 | 0.314 | 0.008 | 1.271 | 0.231 | 0.191 | 0.008 |
9 | 2.758 | 4.182 | 1.903 | 1.529 | 0.756 | 0.586 | 2.143 | 0.786 | 1.062 | 0.393 | 0.387 | 2.121 | 0.560 | 1.076 | 0.387 |
10 | 0.172 | 2.048 | 0.447 | 0.263 | 0.959 | 0.521 | 2.064 | 1.082 | -0.004 | 1.052 | 0.322 | 2.042 | 0.857 | 0.01 | 0.322 |
11 | 2.455 | 4.371 | 1.433 | 0.732 | 0.759 | 0.901 | 2.238 | 1.380 | 0.677 | 0.591 | 0.225 | 2.163 | 0.613 | 0.722 | 0.225 |
Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|
Estimated by Eq(1.1), n = 20 | |||
Pearson | r = 0.7446 | 1.66·10-4 | tPrs,1 = 4.73 |
Spearman | ρ = 0.6692 | 1.25·10-3 | tSpm,1 = 3.82 |
Semi-Q | rsQ = 0.7059 | 5.06·10-4 | tsQ = 4.23 |
Kendall τa | τKen,a = 0.5158 | 1.47·10-3 | ZKen,τa = 3.18 |
Kendall τb | τKen,b = 0.5158 | 1.47·10-3 | ZKen,τb = 3.18 |
Kendall τc | τKen,c = 0.4900 | 2.52·10-3 | ZKen,τc = 3.02 |
Gamma | Γ = 0.5158 | 1.01·10-1 | ZΓ = 1.64 |
Estimated by Eq(1.2), n = 25 | |||
Pearson | r = 0.6821 | 9.24·10-4 | tPrs,1 = 3.96 |
Spearman | ρ = 0.6361 | 2.57·10-3 | tSpm,1 = 3.50 |
Semi-Q | rsQ = 0.6587 | 1.59·10-3 | tsQ = 3.71 |
Kendall τa | τKen,a = 0.4737 | 3.50·10-3 | ZKen,τa = 2.92 |
Kendall τb | τKen,b = 0.4737 | 3.50·10-3 | ZKen,τb = 2.92 |
Kendall τc | τKen,c = 0.4500 | 5.54·10-3 | ZKen,τc = 2.77 |
Gamma | Γ = 0.4737 | 1.67·10-1 | ZΓ = 1.38 |
- ÷
- The number distinct compounds on chromatogram DCN - Eq (7);
- ÷
- The string of standard deviation of retardation factors ordered ascending and estimated by Eq (1) compared with ideal positions of the peaks obtained through experiment RFD - Eq (9);
- ÷
- The string of sum of the peak resolutions obtained through experiment RSS - Eq (12);
- ÷
- The squared of effective plate number QN- Eq (13);
- ÷
- Average peaks separation (into experiment) RSA - Eq (15);
- ÷
- The string of mean resolution calculated with Minkowski experimental peaks RSR - Eq (17);
- ÷
- The string of experimental peaks with minimal resolution QF- Eq (18).
No. | Experimental | Estimated by Eq(1.1), n = 4 | Estimated by Eq(1.2), n = 5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DCN | RFD | RSS | QN | DCN | RFD | RSS | QN | DCN | RFD | RSS | QN | |
1 | 5 | 0.047 | 5.730 | 71.900 | 4 (4.222) | 0.057 | 3.73 | 83.857 | ||||
2 | 1 | 0.283 | 0.000 | 114.680 | ||||||||
3 | 4 | 0.081 | 2.260 | 108.700 | ||||||||
4 | 5 | 0.055 | 4.610 | 89.550 | ||||||||
5 | 4 | 0.078 | 2.580 | 103.840 | ||||||||
6 | 5 | 0.057 | 3.510 | 83.790 | ||||||||
7 | 3 | 0.097 | 4.020 | 79.280 | ||||||||
8 | 4 | 0.067 | 5.860 | 59.460 | 2 (2.368) | 0.181 | 2.135 | 98.554 | 2 (2.200) | 0.183 | 1.703 | 101.14 |
9 | 5 | 0.036 | 10.370 | 71.240 | 5 (5.168) | 0.042 | 4.574 | 85.744 | 5 (5.000) | 0.044 | 4.142 | 88.326 |
10 | 4 | 0.076 | 2.930 | 80.920 | 4 (4.328) | 0.062 | 3.661 | 89.591 | 4 (4.160) | 0.064 | 3.229 | 92.174 |
11 | 5 | 0.040 | 8.990 | 63.380 | 5 (5.220) | 0.039 | 5.192 | 79.123 | 5 (4.650) | 0.046 | 3.725 | 87.895 |
No | Experimental | Estimated by Eq(1.1), n = 4 | Estimated by Eq(1.2), n = 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
RSA | RSR | QF | RSA | RSR | QF | RSA | RSR | QF | |
1 | 1.434 | 1.285 | 0.310 | 0.932 | 0.636 | 0.075 | |||
2 | 0.000 | 0.000 | 0.000 | ||||||
3 | 0.566 | 0.401 | 0.000 | ||||||
4 | 1.153 | 1.035 | 0.427 | ||||||
5 | 0.644 | 0.452 | 0.000 | ||||||
6 | 0.878 | 0.778 | 0.275 | ||||||
7 | 1.004 | 0.559 | 0.000 | ||||||
8 | 1.464 | 1.169 | 0.131 | 0.533 | 0.380 | 0.028 | 0.425 | 0.240 | 0.000 |
9 | 2.593 | 2.498 | 1.529 | 1.144 | 1.021 | 0.344 | 1.035 | 0.881 | 0.293 |
10 | 0.733 | 0.573 | 0.172 | 0.916 | 0.696 | 0.105 | 0.807 | 0.556 | 0.054 |
11 | 2.248 | 2.038 | 0.732 | 1.299 | 1.180 | 0.311 | 0.931 | 0.704 | 0.138 |
Name | Correlation coefficient | p-value | Statistical parameter | Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|---|---|---|---|
DCN | RSA | ||||||
Pearson | r = 0.8165 | 1.80·10-1 | tPrs,1 = 2.0 | Pearson | r = 0.5905 | 4.09·10-1 | tPrs,1 = 1.03 |
Spearman | ρ = 0.9428 | 5.72·10-2 | tSpm,1 = 4.0 | Spearman | ρ = 0.6000 | 4.00·10-1 | tSpm,1 = 1.06 |
Semi-Q | rsQ = 0.8457 | 1.23·10-1 | tsQ = 2.59 | Semi-Q | rsQ = 0.5952 | 4.05·10-1 | tsQ = 1.05 |
Kendall tau-a | τKen,a = 0.6667 | 1.75·10-1 | ZKen,τa = 1.36 | Kendall tau-a | τKen,a = 0.3333 | 4.97·10-1 | ZKen,τa = 0.68 |
Kendall tau-b | τKen,b = 0.7303 | 1.49·10-1 | ZKen,τb = 1.44 | Kendall tau-b | τKen,b = 0.3333 | 4.97·10-1 | ZKen,τb = 0.68 |
Kendall tau-c | τKen,c = 0.5000 | 2.79·10-1 | ZKen,τc = 1.08 | Kendall tau-c | τKen,c = 0.2500 | 6.10·10-1 | ZKen,τc = 0.51 |
Gamma | Γ = 1.0000 | 4.15·10-2 | ZΓ = 2.04 | Gamma | Γ = 0.3333 | 8.21·10-1 | ZΓ = 0.23 |
RFD | RSR | ||||||
Pearson | r = 0.5434 | 4.56·10-1 | tPrs,1 = 0.92 | Pearson | r = 0.7118 | 2.88·10-1 | tPrs,1 = 2.05 |
Spearman | ρ = 0.6000 | 4.00·10-1 | tSpm,1 = 1.06 | Spearman | ρ = 0.6000 | 3.46·10-1 | tSpm,1 = 1.06 |
Semi-Q | rsQ = 0.5710 | 4.29·10-1 | tsQ = 0.98 | Semi-Q | rsQ = 0.6535 | 5.73·10-1 | tsQ = 1.22 |
Kendall tau-a | τKen,a = 0.3333 | 4.97·10-1 | ZKen,τa = 0.68 | Kendall tau-a | τKen,a = 0.3333 | 4.47·10-1 | ZKen,τa = 0.68 |
Kendall tau-b | τKen,b = 0.3333 | 4.97·10-1 | ZKen,τb = 0.68 | Kendall tau-b | τKen,b = 0.3333 | 4.97·10-1 | ZKen,τb = 0.68 |
Kendall tau-c | τKen,c = 0.250 | 6.10·10-1 | ZKen,τc = 0.51 | Kendall tau-c | τKen,c = 0.2500 | 6.10·10-1 | ZKen,τc = 0.51 |
Gamma | Γ = 0.3333 | 8.21·10-1 | ZΓ = 0.23 | Gamma | Γ = 0.3333 | 8.21·10-1 | ZΓ = 0.23 |
RSS | QF | ||||||
Pearson | r = 0.5906 | 4.09·10-1 | tPrs,1 = 1.04 | Pearson | r = 0.8936 | 1.06·10-1 | tPrs,1 = 2.82 |
Spearman | ρ = 0.6000 | 4.00·10-1 | tSpm,1 = 1.13 | Spearman | ρ = 1.0000 | 5.47·10-2 | tSpm,1 = 4.10 |
Semi-Q | rsQ = 0.5953 | 4.05·10-1 | tsQ = 1.05 | Semi-Q | rsQ = 0.9453 | 6.68·10-2 | tsQ = 2.82 |
Kendall | τKen,a = 0.3333 | 1.97·10-1 | ZKen,τa = 0.68 | Kendall | τKen,a = 1.0000 | 4.15·10-2 | ZKen,τa = 2.04 |
Kendall | τKen,b = 0.3333 | 4.97·10-1 | ZKen,τb = 0.68 | Kendall | τKen,b = 1.0000 | 4.15·10-2 | ZKen,τb = 2.04 |
Kendall | τKen,c = 0.2500 | 6.10·10-1 | ZKen,τc = 0.51 | Kendall | τKen,c = 0.7500 | 1.26·10-1 | ZKen,τc = 1.53 |
Gamma | Γ = 0.3333 | 8.21·10-1 | ZΓ = 0.23 | Gamma | Γ = 1.0000 | 4.15·10-2 | ZΓ = 2.04 |
QN | |||||||
Pearson | r = -0.1588 | 9.85·10-1 | tPrs,1 = 0.22 | n = sample size; DCN = number of distinct compounds on chromatogram; RFD = string of standard deviation of retardation factors estimated by Eq(1) ordered ascending compared with ideal positions of the peaks obtained through experiment; RSS = string of sum of the peak resolutions obtained through experiment; QN = squared of effective plate number;RSA = average peaks separation (into experiment); RSR = string of Minkowski mean resolution of experimental peaks; QF = string of experimental peaks with minimal resolution. | |||
Spearman | ρ = -0.2000 | 8.22·10-1 | tSpm,1 = 0.29 | ||||
Semi-Q | rsQ = 0.1782 | 8.00·10-1 | tsQ = 0.25 | ||||
Kendall tau-a | τKen,a = 0.0000 | 1.00 | ZKen,τa = 0.00 | ||||
Kendall tau-b | τKen,b = 0.0000 | 1.00 | ZKen,τb = 0.00 | ||||
Kendall tau-c | τKen,c = 0.0000 | 1.00 | ZKen,τc = 0.00 | ||||
Gamma | Γ = 0.0000 | 1.00 | ZΓ = 0.00 |
Name | Correlation coefficient | p-value | Statistical parameter | Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|---|---|---|---|
DCN | RSA | ||||||
Pearson | r = 0.7454 | 1.48·10-1 | tPrs,1 = 3.75 | Pearson | r = 0.4698 | 4.25·10-1 | tPrs,1 = 0.92 |
Spearman | ρ = 0.4722 | 4.22·10-1 | tSpm,1 = 0.93 | Spearman | ρ = 0.5000 | 3.91·10-1 | tSpm,1 = 1.00 |
Semi-Q | rsQ = 0.5933 | 2.92·10-1 | tsQ = 1.28 | Semi-Q | rsQ = 0.4847 | 4.08·10-1 | tsQ = 0.96 |
Kendall tau-a | τKen,a = 0.3000 | 4.62·10-1 | ZKen,τa = 0.73 | Kendall tau-a | τKen,a = 0.4000 | 3.27·10-1 | ZKen,τa = 0.98 |
Kendall tau-b | τKen,b = 0.3162 | 4.49·10-1 | ZKen,τb = 0.76 | Kendall tau-b | τKen,b = 0.4000 | 3.27·10-1 | ZKen,τb = 0.98 |
Kendall tau-c | τKen,c = 0.2400 | 5.44·10-1 | ZKen,τc = 0.61 | Kendall tau-c | τKen,c = 0.3200 | 4.33·10-1 | ZKen,τc = 0.78 |
Gamma | Γ = 0.4286 | 6.53·10-1 | ZΓ = 0.45 | Gamma | Γ = 0.4000 | 6.95·10-1 | ZΓ = 0.39 |
RFD | RSR | ||||||
Pearson | r = 0.5520 | 3.35·10-1 | tPrs,1 = 1.15 | Pearson | r = 0.6827 | 2.04·10-1 | tPrs,1 = 2.62 |
Spearman | ρ = 0.9000 | 3.74·10-2 | tSpm,1 = 3.58 | Spearman | ρ = 0.9000 | 3.74·10-2 | tSpm,1 = 3.58 |
Semi-Q | rsQ = 0.7049 | 1.84·10-1 | tsQ = 1.72 | Semi-Q | rsQ = 0.7838 | 1.17·10-1 | tsQ = 2.19 |
Kendall tau-a | τKen,a = 0.8000 | 5.00·10-2 | ZKen,τa = 1.96 | Kendall tau-a | τKen,a = 0.8000 | 5.00·10-2 | ZKen,τa = 1.96 |
Kendall tau-b | τKen,b = 0.8000 | 5.00·10-2 | ZKen,τb = 1.96 | Kendall tau-b | τKen,b = 0.8000 | 5.00·10-2 | ZKen,τb = 1.96 |
Kendall tau-c | τKen,c = 0.6400 | 1.17·10-1 | ZKen,τc = 1.57 | Kendall tau-c | τKen,c = 0.6400 | 1.17·10-1 | ZKen,τc = 1.57 |
Gamma | Γ = 0.8000 | 1.17·10-1 | ZΓ = 1.57 | Gamma | Γ = 0.8000 | 1.17·10-1 | ZΓ = 1.57 |
RSS | QF | ||||||
Pearson | r = 0.4691 | 4.25·10-1 | tPrs,1 = 0.92 | Pearson | r = 0.9871 | 1.76·10-3 | tPrs,1 = 10.67 |
Spearman | ρ = 0.5000 | 3.91·10-1 | tSpm,1 = 1.00 | Spearman | ρ = 1.0000 | 1.24·10-2 | tSpm,1 = 5.41 |
Semi-Q | rsQ = 0.4843 | 4.08·10-1 | tsQ = 0.96 | Semi-Q | rsQ = 0.9935 | 6.26·10-4 | tsQ = 15.14 |
Kendall | τKen,a = 0.4000 | 3.27·10-1 | ZKen,τa = 0.98 | Kendall | τKen,a = 1.0000 | 1.43·10-2 | ZKen,τa = 2.45 |
Kendall | τKen,b = 0.4000 | 3.27·10-1 | ZKen,τb = 0.98 | Kendall | τKen,b = 1.0000 | 1.43·10-2 | ZKen,τb = 2.45 |
Kendall | τKen,c = 0.3200 | 4.33·10-1 | ZKen,τc = 0.78 | Kendall | τKen,c = 0.8000 | 5.00·10-2 | ZKen,τc = 1.96 |
Gamma | Γ = 0.4000 | 6.95·10-1 | ZΓ = 0.39 | Gamma | Γ = 1.0000 | 1.43·10-2 | ZΓ = 2.45 |
QN | |||||||
Pearson | r = -0.4189 | 4.82·10-1 | tPrs,1 = 0.80 | n = sample size; DCN = number of distinct compounds on chromatogram; RFD = string of standard deviation of retardation factors ordered ascending and estimated by Eq(1) compared with ideal positions of the peaks obtained through experiment; RSS = string of sum of the peak resolutions obtained through experiment; QN = squared of effective plate number; RSA = average peaks separation (into experiment); RSR = string of mean resolution calculated with Minkowski experimental peaks; QF = string of experimental peaks with minimal resolution. | |||
Spearman | ρ = -0.3000 | 6.24·10-1 | tSpm,1 = 0.54 | ||||
Semi-Q | rsQ = 0.3545 | 5.58·10-1 | tsQ = 0.66 | ||||
Kendall tau-a | τKen,a = 0.2000 | 6.24·10-1 | ZKen,τa = 0.49 | ||||
Kendall tau-b | τKen,b = 0.2000 | 6.24·10-1 | ZKen,τb = 0.49 | ||||
Kendall tau-c | τKen,c = 0.1600 | 7.05·10-1 | ZKen,τc = 0.39 | ||||
Gamma | Γ = 0.2000 | 9.22·10-1 | ZΓ = 0.10 |
No. | Experimental | Estimated by Eq(1.1), n = 4 | Estimated by Eq(1.2), n = 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
RSP | IEnt | IEne | RSP | IEnt | IEne | RSP | IEnt | IEne | |
1 | 31.900 | 4.000 | 16.000 | 17.678 | 10.407 | 2.67 | |||
2 | 0.000 | 11.610 | 0.000 | ||||||
3 | 8.300 | 11.610 | 0.000 | ||||||
4 | 20.600 | 8.000 | 8.000 | ||||||
5 | 9.900 | 11.610 | 0.000 | ||||||
6 | 16.800 | 8.000 | 8.000 | ||||||
7 | 20.300 | 11.610 | 0.000 | ||||||
8 | 39.400 | 4.000 | 16.000 | 11.096 | 10.371 | 2.560 | 8.024 | 11.754 | 0.00 |
9 | 58.200 | 2.000 | 18.000 | 21.652 | 7.338 | 9.280 | 18.58 | 8.722 | 6.40 |
10 | 14.500 | 11.610 | 0.000 | 17.676 | 9.360 | 4.800 | 14.604 | 10.744 | 1.92 |
11 | 56.700 | 4.750 | 14.000 | 27.285 | 5.203 | 13.565 | 16.852 | 9.902 | 3.78 |
Name | Correlation coefficient | p-value | Statistical parameter | Name | Correlation coefficient | p-value | Statistical parameter | |
---|---|---|---|---|---|---|---|---|
RSP | IEnt | |||||||
Pearson | r = 0.5326 | 4.67·10-1 | tPrs,1 = 0.90 | Pearson | r = 0.3188 | 6.81·10-1 | tPrs,1 = 0.48 | |
Spearman | ρ = 0.6000 | 4.00·10-1 | tSpm,1 = 1.06 | Spearman | ρ = 0.0000 | 1.00 | tSpm,1 = 0.00 | |
Semi-Q | rsQ = 0.5653 | 4.35·10-1 | tsQ = 0.97 | Semi-Q | rsQ = 0.0000 | 1.00 | tsQ = 0.00 | |
Kendall tau-a | τKen,a = 0.3333 | 4.97·10-1 | ZKen,τa = 0.68 | Kendall tau-a | τKen,a = 0.0000 | 1.00 | ZKen,τa = 0.00 | |
Kendall tau-b | τKen,b = 0.3333 | 4.97·10-1 | ZKen,τb = 0.68 | Kendall tau-b | τKen,b = 0.0000 | 1.00 | ZKen,τb = 0.00 | |
Kendall tau-c | τKen,c = 0.2500 | 6.10·10-1 | ZKen,τc = 0.51 | Kendall tau-c | τKen,c = 0.0000 | 1.00 | ZKen,τc = 0.00 | |
Gamma | Γ = 0.3333 | 8.21·10-1 | ZΓ = 0.23 | Gamma | Γ = 0.0000 | 1.00 | ZΓ = 0.00 | |
IEne | ||||||||
Pearson | r = 0.2962 | 7.04·10-1 | tPrs,1 = 0.44 | RSP = resolution divided by the number of effective plates; IEnt = informational energy; IEne = informational entropy; n = sample size. | ||||
Spearman | ρ = 0.0000 | 1.00 | tSpm,1 = 0.00 | |||||
Semi-Q | rsQ = 0.0000 | 1.00 | tsQ = 0.00 | |||||
Kendall | τKen,a = 0.0000 | 1.00 | ZKen,τa = 0.00 | |||||
Kendall | τKen,b = 0.0000 | 1.00 | ZKen,τb = 0.00 | |||||
Kendall | τKen,c = 0.0000 | 1.00 | ZKen,τc = 0.00 | |||||
Gamma | Γ = 0.0000 | 1.00 | ZΓ = 0.00 |
Name | Correlation coefficient | p-value | Statistical parameter | Name | Correlation coefficient | p-value | Statistical parameter |
---|---|---|---|---|---|---|---|
RSP | IEnt | ||||||
Pearson | r = 0.2864 | 6.40·10-1 | tPrs,1 = 0.52 | Pearson | r = 0.3770 | 5.32·10-1 | tPrs,1 = 0.71 |
Spearman | ρ = 0.5000 | 3.91·10-1 | tSpm,1 = 1.00 | Spearman | ρ = 0.4104 | 4.92·10-1 | tSpm,1 = 0.78 |
Semi-Q | rsQ = 0.3784 | 5.30·10-1 | tsQ = 0.71 | Semi-Q | rsQ = 0.3934 | 5.12·10-1 | tsQ = 0.74 |
Kendall tau-a | τKen,a = 0.4000 | 3.27·10-1 | ZKen,τa = 0.98 | Kendall tau-a | τKen,a = 0.3000 | 4.62·10-1 | ZKen,τa = 0.73 |
Kendall tau-b | τKen,b = 0.4000 | 3.27·10-1 | ZKen,τb = 0.98 | Kendall tau-b | τKen,b = 0.3162 | 4.48·10-1 | ZKen,τb = 0.76 |
Kendall tau-c | τKen,c = 0.3200 | 4.33·10-1 | ZKen,τc = 0.78 | Kendall tau-c | τKen,c = 0.2400 | 5.44·10-1 | ZKen,τc = 0.61 |
Gamma | Γ = 0.4000 | 6.95·10-1 | ZΓ = 0.39 | Gamma | Γ = 0.3333 | 7.85·10-1 | ZΓ = 0.27 |
IEne | |||||||
Pearson | r = 0.3152 | 6.05·10-1 | tPrs,1 = 0.58 | RSP = resolution divided by the number of effective plates; IEnt = informational energy; IEne = informational entropy; n = sample size. | |||
Spearman | ρ = 0.4104 | 4.92·10-1 | tSpm,1 = 0.78 | ||||
Semi-Q | rsQ = 0.3596 | 5.52·10-1 | tsQ = 0.67 | ||||
Kendall | τKen,a = 0.3000 | 4.62·10-1 | ZKen,τa = 0.73 | ||||
Kendall | τKen,b = 0.3162 | 4.48·10-1 | ZKen,τb = 0.76 | ||||
Kendall | τKen,c = 0.2400 | 5.44·10-1 | ZKen,τc = 0.61 | ||||
Gamma | Γ = 0.3333 | 7.85·10-1 | ZΓ = 0.27 |
Experiments Quality Assessment
Parameter | Pearson | Spearman | Semi-Q | Kendall τa | Kendall τb | Kendall τc | Gamma |
---|---|---|---|---|---|---|---|
Eq (1.1) | |||||||
RF | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
RFO | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
RSM | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ |
RSO | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ |
QF | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ |
DCN | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ |
RFD | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RSS | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
QN | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RSA | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RSR | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RSP | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
IEne | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
IEnt | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
Eq (1.2) | |||||||
RF | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
RFO | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
RSM | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
RSO | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✕ |
QF | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
DCN | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RFD | ✕ | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ |
RSS | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
QN | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RSA | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
RSR | ✕ | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ |
RSP | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
IEne | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
IEnt | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ |
No | Model | CRF | Estimated | Experimental | Difference (%) | Group Rank | Exp No |
---|---|---|---|---|---|---|---|
1 | Eq (1.1) | RF | 0.505 | 0.181 | 23.62 | 1 | 11 |
2 | Eq (1.1) | RF | 0.253 | 0.709 | 23.70 | 2 | 11 |
3 | Eq (1.1) | RF | 0.216 | 0.072 | 25.00 | 3 | 8 |
4 | Eq (1.1) | RF | 0.203 | 0.060 | 27.19 | 4 | 8 |
5 | Eq (1.1) | RSM | 0.456 | 2.318 | 33.56 | 1 | 8 |
6 | Eq (1.1) | RSM | 1.38 | 7.191 | 33.90 | 2 | 11 |
7 | Eq (1.1) | RSM | 8.665 | 1.433 | 35.81 | 3 | 11 |
8 | Eq (1.1) | RSM | 0.677 | 4.371 | 36.59 | 4 | 11 |
9 | Eq (1.1) | RSM | -0.004 | 0.263 | 51.54 | 5 | 10 |
10 | Eq (1.1) | RFO | 0.393 | 0.756 | 15.80 | 1 | 9 |
11 | Eq (1.1) | RFO | 0.347 | 0.683 | 16.31 | 2 | 9 |
12 | Eq (1.1) | RFO | 0.219 | 0.072 | 25.26 | 3 | 8 |
13 | Eq (1.1) | RFO | 0.200 | 0.06 | 26.92 | 4 | 8 |
14 | Eq (1.1) | RSO | 0.586 | 2.758 | 32.48 | 1 | 9 |
15 | Eq (1.1) | RSO | 0.456 | 2.318 | 33.56 | 2 | 8 |
16 | Eq (1.1) | RSO | -0.004 | 0.263 | 51.54 | 3 | 10 |
18 | Eq (1.1) | QF | 0.028 | 0.131 | 32.39 | 1 | 8 |
19 | Eq (1.2) | RF | 0.311 | 0.709 | 19.51 | 1 | 11 |
20 | Eq (1.2) | RF | 0.322 | 0.759 | 20.21 | 2 | 11 |
21 | Eq (1.2) | RF | 0.438 | 0.181 | 20.76 | 3 | 11 |
22 | Eq (1.2) | RF | 0.215 | 0.072 | 24.91 | 4 | 8 |
23 | Eq (1.2) | RF | 0.220 | 0.060 | 28.57 | 5 | 8 |
24 | Eq (1.2) | RSM | 2.646 | 14.473 | 34.54 | 1 | 8 |
25 | Eq (1.2) | RSM | 1.819 | 10.234 | 34.91 | 2 | 11 |
26 | Eq (1.2) | RSM | 0.196 | 1.118 | 35.08 | 3 | 1 |
27 | Eq (1.2) | RSM | 0.722 | 4.371 | 35.82 | 4 | 11 |
28 | Eq (1.2) | RSM | 0.387 | 2.758 | 37.69 | 5 | 9 |
29 | Eq (1.2) | RSM | 0.325 | 2.392 | 38.04 | 6 | 8 |
30 | Eq (1.2) | RSM | 0.231 | 2.318 | 40.94 | 7 | 8 |
31 | Eq(1.2) | RSM | 0.613 | 7.191 | 42.15 | 8 | 11 |
32 | Eq (1.2) | RSM | 0.008 | 0.131 | 44.24 | 9 | 8 |
33 | Eq (1.2) | RSM | 0.010 | 0.263 | 46.34 | 10 | 10 |
34 | Eq (1.2) | RFO | 0.289 | 0.573 | 16.47 | 1 | 9 |
35 | Eq (1.2) | RFO | 0.364 | 0.756 | 17.50 | 2 | 9 |
36 | Eq (1.2) | RFO | 0.317 | 0.683 | 18.30 | 3 | 9 |
37 | Eq (1.2) | RFO | 0.219 | 0.072 | 25.26 | 4 | 8 |
38 | Eq (1.2) | RFO | 0.215 | 0.060 | 28.18 | 5 | 8 |
39 | Eq (1.2) | RSO | 0.231 | 2.318 | 40.94 | 1 | 8 |
40 | Eq (1.2) | RSO | 0.225 | 2.455 | 41.60 | 2 | 11 |
41 | Eq (1.2) | RSO | 0.008 | 0.131 | 44.24 | 3 | 8 |
42 | Eq (1.2) | RSO | 0.010 | 0.263 | 46.34 | 4 | 10 |
43 | Eq (1.2) | QF | -0.023 | 0.131 | 71.30 | 1 | 8 |
Conclusions
- The model presented in Eq (1.2) seems to be more reliable for the estimation of chromatographic response functions on investigated androstane isomers. Four response functions (RF - retardation factor; RFO - retardation factor ordered ascending by the chromatographic peak; RSM - resolution of pairs of compounds; QF - string of experimental peaks with minimal resolution) revealed statistically significant linear relationships between experimental and estimated values.
- The models presented in Eq (1.1) is valid and reliable in investigation of retardation factor, retardation factor ordered ascending by the chromatographic response, resolution of pairs of compounds and resolution matrix of successive chromatographic peaks;
- Good performances are obtained in estimation of resolution of pairs of compounds but the relationship between experimental and estimated values by Eq (1.1) and Eq (1.2) could be questionable due to the absence of significantly statistic Gamma correlation coefficient;
- Some estimation abilities were observed in investigation of the string of standard deviation of retardation factors ordered ascending estimated by Eq (1.2) compared with ideal positions of the peaks obtained through experiment; and of the string of Minkowski type mean resolution calculated by Eq (1.2) with experimental peaks. These two chromatographic response functions seem to be qualitative and rank variables.
- Two global response functions for the separation, abbreviated as QF and DCN recorded a weak acceptance in investigation of Eq (1.1). Thus, QF are rejected at 95% confidence by Spearman (with 5.47% error), Semi-Q (6.68% error), Pearson (with 10.6% error) and Kendall τc (with 12.6% error) even if the correlations are good (over 0.75). The small dimension of the sample size, not grater enough to provide statistical significance of the obtained correlations, explained with a good confidence the rejection of these correlations. Note that QF chromatographic response function is in fact a minimum function of resolutions of the separation, resolutions that are accepted by the model from Eq (1.1) - see 2nd conclusion. DCN is statistically significant by the Goodman-Kruskal method (concordant vs. discordant) and is near to be statistically significant by the Spearman method (5.72% error). Thus, the rejection is recorded for a quantitative correlation, but a possible acceptance is seen by the qualitative correlation. Again, small sample size is against of a solid statistical conclusion for DCN.
- The results presented in Experiments Quality Assessment subsection sustain the hypothesis that the proposed equations (Eq (1.1) and Eq (1.2), respectively) could be used in order to verify the quality of experimental data. The results obtained for deviations of rank sums suggest that the experimental data of the experiment no. 8 are questionable.
Acknowledgements
References and Notes
- Senchenkova, E.M. Tsvet (or Tswett). Mikhail Semenovich (1872 - 1919). In Dictionary of scientific biography; Gillispie, Ch. C., Ed.; Charles Scribner Sons: New York, 1976; pp. 486–488. [Google Scholar]
- Tswett, M. Adsorption analysis and chromatographic method. Application to the chemistry of the chlorophyll. (in German). Ber. Deut. Bot. Ges 1906, 24, 316–323. [Google Scholar]
- Duarte, A.C.; Capelo, S. Application of chemometrics in separation science. J. Liq. Chrom. Rel. Technol 2006, 29, 1143–1176. [Google Scholar] [CrossRef]
- Xu, L.; Tang, L.-J.; Cai, C.-B.; Wu, H.-L.; Shen, G.-L.; Yu, R.-Q.; Jiang, J.-H. Chemometric methods for evaluation of chromatographic separation quality from two-way data-A review. Anal. Chim. Acta 2008, 613, 121–134. [Google Scholar] [CrossRef]
- Miyake, T.; Yafuso M. Pollination of Alocasia cucullata (Araceae) by two Colocasiomyia flies known to be specific pollinators for Alocasia odora. Plant Species Biol 2005, 20, 201–208. [Google Scholar] [CrossRef]
- De Abreu, I.N.; Sawaya, A.C.; Eberlin, M.N.; Mazzafera, P. Production of pilocarpine in callus of jaborandi (Pilocarpus microphyllus stapf). In Vitro Cell. Dev. Biol.: Plant 2005, 41, 806–811. [Google Scholar] [CrossRef]
- Sharma, L.; Desai, A.; Sharma, A. A thin layer chromatography laboratory experiment of medical importance. Biochem. Mol. Biol. Educ 2006, 34, 44–48. [Google Scholar]
- Reddy, B.S.; Rozati, R.; Reddy, B.V.R.; Raman, N.V.V.S.S. Association of phthalate esters with endometriosis in Indian women. BJOG 2006, 113, 515–520. [Google Scholar] [CrossRef]
- Mulija, M.; Indrayanto, G. Steroid Analysis by TLC. In Encyclopedia of Chromatography; Cazes, J., Ed.; Marcel Dekker: New York, 2001; pp. 794–797. [Google Scholar]
- Scott, R.P.W. Thin Layer Chromatography; Library4Science: Letchworth Garden City, UK, 2007. [Google Scholar]
- Nyiredy, Sz.; Meier, B.; Erdelmeier, C.A.J.; Sticher, O. PRISMA: A Geometrical Design for Solvent Optimization in HPLC. J. High Resolut. Chromatogr. Chromatogr. Commun 1985, 8, 186–188. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhang, Y.J.; Gong, W.J.; Gopalan, A.I.; Lee, K.-P. Rapid separation of Sudan dyes by reverse-phase high performance liquid chromatography through statistically designed experiments. J. Chromatogr. A 2005, 1098, 183–187. [Google Scholar]
- Cimpoiu, C.; Jäntschi, L.; Hodişan, T. A New Method for Mobile Phase Optimization in High-Performance Thin-Layer Chromatography (HPTLC). J. Planar Chromatogr. - Mod. TLC 1998, 11, 191–194. [Google Scholar]
- Cimpoiu, C.; Hodisan, T. Application of numerical taxonomy techniques to the choice of optimum mobile phase in high-performance thin-layer chromatography (HPTLC). J. Pharm. Biomed. Anal 1999, 21((5)), 895–900. [Google Scholar] [CrossRef]
- Vasiljević, T.; Onjia, A.; Čokeša, Đ.; Laušević, M. Optimization of artificial neural network for retention modeling in high-performance liquid chromatography. Talanta 2004, 64, 785–790. [Google Scholar] [CrossRef]
- Tran, A.T.K.; Hyne, R.V.; Pablo, F. Optimisation of the separation of herbicides by linear gradient high performance liquid chromatography utilising artificial neural networks. Talanta 2007, 71, 1268–1275. [Google Scholar] [CrossRef]
- Cimpoiu, C.; Jäntschi, L.; Hodişan, T. A New Mathematical Model for the Optimization of the Mobile Phase Composition in HPTLC and the Comparision with Other Models. J. Liq. Chromatogr. Relat. Technol 1999, 22, 1429–1441. [Google Scholar] [CrossRef]
- Jäntschi, L.; Hodişan, S.; Cimpoiu, C.; Ceteraş, I. Analysis of Some Steroids by TLC Using Optimum Mobile Phases. Acta Univ. Cibin. - Ser. F Chem 2005, 8, 67–76. [Google Scholar]
- Jäntschi, L.; Hodişan, S.; Cimpoiu, C.; Hosu, A.; Darvasi, E.; Hodişan, T. Modeling of thin-layer chromatographic separation of androstane isomers. J. Planar Chromatogr. - Mod. TLC 2007, 20((2)), 91–94. [Google Scholar]
- Hodişan, S.; Cimpoiu, C.; Casoni, D. Separation of Androstan Isomers by High Performance Thin Layer Chromatography (HPTLC) Using an Optimum Mobile Phase. Acta Univ. Cibin. - Ser. F Chem 2004, 7, 27–31. [Google Scholar]
- Stoenoiu, C.E.; Bolboacă, S. D.; Jäntschi, L. Mobile Phase Optimization Method for Steroids Separation. Appl. Med. Inform 2006, 18, 17–24. [Google Scholar]
- Ettre, L.S. Nomenclature for Chromatography. (IUPAC Recommendations 1993). Pure Appl. Chem 1993, 65, 819–872. [Google Scholar] [CrossRef]
- Bolboacă, S.D.; Jäntschi, L. Pearson versus Spearman, Kendall's Tau Correlation Analysis on Structure-Activity Relationships of Biologic Active Compounds. Leonardo J. Sci 2006, 9, 179–200. [Google Scholar]
- Jäntschi, L.; Bolboacă, S.D. Triazines herbicidal assessed activity. Stud. Cercet. Stiint. - Ser. Biol., Univ. Bacau 2007, 12, 57–62. [Google Scholar]
- Bolboacă, S.D.; Jäntschi, L. Modelling the Property of Compounds from Structure: Statistical Methods for Models Validation. Environ. Chem. Lett 2008, 6, 175–181. [Google Scholar] [CrossRef]
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bolboacă, S.D.; Pică, E.M.; Cimpoiu, C.V.; Jäntschi, L. Statistical Assessment of Solvent Mixture Models Used for Separation of Biological Active Compounds. Molecules 2008, 13, 1617-1639. https://doi.org/10.3390/molecules13081617
Bolboacă SD, Pică EM, Cimpoiu CV, Jäntschi L. Statistical Assessment of Solvent Mixture Models Used for Separation of Biological Active Compounds. Molecules. 2008; 13(8):1617-1639. https://doi.org/10.3390/molecules13081617
Chicago/Turabian StyleBolboacă, Sorana D., Elena M. Pică, Claudia V. Cimpoiu, and Lorentz Jäntschi. 2008. "Statistical Assessment of Solvent Mixture Models Used for Separation of Biological Active Compounds" Molecules 13, no. 8: 1617-1639. https://doi.org/10.3390/molecules13081617
APA StyleBolboacă, S. D., Pică, E. M., Cimpoiu, C. V., & Jäntschi, L. (2008). Statistical Assessment of Solvent Mixture Models Used for Separation of Biological Active Compounds. Molecules, 13(8), 1617-1639. https://doi.org/10.3390/molecules13081617