Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs)
Abstract
:1. Introduction
2. Chemical, Nutritional, and Technological Interest of DFAs
3. Chemical Strategies towards the Stereoselective Synthesis of DFAs
3.1. Synthesis of DFAs by protic acid activation of unprotected d-fructose precursors
3.2. Stereoselective synthesis of DFAs by ring-size blocking of the ketose precursor
Starting material | R | Products (relative proportion) | ||
---|---|---|---|---|
α,α | α,β | β,β | ||
22 | Bn | 24 | 26 | n.d. |
(1 : 2.5) | ||||
23 | Bz | 25 | 27 | n.d. |
(25 : 1) | ||||
28 | Bn | n.d. | 30 | 32 |
(25 : 1) | ||||
29 | Bz | n.d. | 31 | 33 |
(1 : 1) |
3.3. Stereoselective synthesis of DFAs by conformational control of fructosyl donors
Starting material | Products (relative proportion) | ||
---|---|---|---|
α,α | α,β | β,β | |
22 | 24 | 26 | n.d. |
(1 : 2.5) | |||
34 | n.d. | 36 | n.d. |
28 | n.d. | 30 | 32 |
(25 : 1) | |||
35 | n.d. | 37 | 38 |
(1 : 3) |
3.4. Stereoselective synthesis of DFAs via intramolecular aglycon delivery
Xylylene tether | Product, yield | |||
---|---|---|---|---|
α,α | α,β | β,β | dimers | |
o (41) | 8% | n.d. | 42 | 6% |
m | 50% | 25% | n.d. | 16% |
p | 12% | n.d. | 3% | 68% |
Xylylene tether | Product, yield | ||
---|---|---|---|
α,β | β,β | dimers | |
o (43) | n.d. | 44 | 35% |
m | 12% | 48% | 24% |
p | n.d. | n.d. | 45 |
4. Enzymatic Strategies towards the Synthesis of DFAs
EC 4.2.2.16 | |
---|---|
common name | levan fructotransferase (DFA IV-forming) |
EC 4.2.2.17 (formerly EC 2.4.1.200) | |
common name | inulin fructotransferase (DFA I-forming) |
EC 4.2.2.18 (formerly EC 2.4.1.93) | |
common name | inulin fructotransferase (DFA III-forming) |
Substrate | Product | Yield (%) |
---|---|---|
inulin, 50 g/L | DFA III | 93.0 |
Conclusions and Perspectives
Acknowledgements
References and Notes
- Mead, K.T.; Brewer, B.N. Strategies in spiroketal synthesis revisited: Recent applications and advances. Curr. Org. Chem. 2003, 7, 227–256. [Google Scholar] [CrossRef]
- Brimble, M.A.; Furkert, D.P. Chemistry of bis-spiroacetal systems: Natural products, synthesis and stereochemistry. Curr. Org. Chem. 2003, 7, 1461–1484. [Google Scholar] [CrossRef]
- Brimble, M.A.; Farés, F.A. Synthesis of bis-spiroacetal ring systems. Tetrahedron 1999, 55, 7661–7706. [Google Scholar] [CrossRef]
- Pietruszka, J. Spongistatins, cynachyrolides, or altohyrtins? Marine macrolides in cancer therapy. Angew. Chem. Int. Ed. 1998, 37, 2629–2636. [Google Scholar] [CrossRef]
- Perron, F.; Albizati, K.F. Chemistry of spiroketals. Chem. Rev. 1989, 89, 1617–1661. [Google Scholar] [CrossRef]
- Perkins, M.V. Total synthesis of enzyme inhibitors spirastrellolide A–Stereochemical confirmation. Angew. Chem. Int. Ed. 2008, 47, 2921–2925. [Google Scholar] [CrossRef]
- Barun, O.; Sommer, S.; Waldmann, H. Asymmetric Solid-Phase Synthesis of 6,6-Spiroketals. Angew. Chem. Int. Ed. 2004, 43, 3195–3199. [Google Scholar] [CrossRef]
- van Hooft, P.A.V.; Oualid, F.E.; Overkleeft, H.S.; van der Marel, G.A.; van Boom, J.H.; Leeuwenbourg, M.A. Synthesis and elaboration of functionalised carbohydrate-derived spiroketals. Org. Biomol. Chem. 2004, 2, 1395–1403. [Google Scholar] [CrossRef]
- Sous, M.E.; Ganame, D.; Tregloan, P.A.; Rizzacasa, M.A. Total Synthesis of (-)-Reveromycin A. Org. Lett. 2004, 6, 3001–3004. [Google Scholar] [CrossRef]
- Hubbs, J.L.; Heathcock, C.H. A Second-Generation Synthesis of the C1-C28 Portion of the Altohyrtins (Spongistatins). J. Am. Chem. Soc. 2003, 125, 12836–12843. [Google Scholar] [CrossRef]
- Gaunt, M.J.; Jessiman, A.S.; Orsini, P.; Tanner, H.R.; Hook, D.F.; Ley, S.V. Synthesis of the C-1-C-28 ABCD Unit of Spongistatin 1. Org. Lett. 2003, 5, 4819–4822. [Google Scholar] [CrossRef]
- Crimmins, M.T.; Katz, J.D.; Washburn, D.G.; Allwein, S.P.; McAtee, L.F. Asymmetric Total Synthesis of Spongistatins 1 and 2. J. Am. Chem. Soc. 2002, 124, 5661–5663. [Google Scholar]
- Betancor, C.; Freire, R.; Pérez-Martín, I.; Prangé, T.; Suárez, E. A Convenient Synthesis of C-22 and C-25 Stereoisomers of Cephalostatin North 1 Side Chain from Spirostan Sapogenins. Org. Lett. 2002, 4, 1295–1297. [Google Scholar]
- Izquierdo, I.; Plaza, M.T.; Rodríguez, M.; Tamayo, J.A. Hexulose Derivatives and Lipase-Mediated Diastereomeric Resolution in the Enantiospecific Total Synthesis of (-)-Talaromycins C and E. Eur. J. Org. Chem. 2002, 309–317. [Google Scholar]
- McDonald, E.J. The polyfructosanes and difructose anhydrides. Adv. Carbohydr. Chem. Biochem. 1946, 2, 253–277. [Google Scholar] [CrossRef]
- Pictet, A.; Chavan, J. Hetero levulosane. Helv. Chim. Acta 1926, 9, 809–814. [Google Scholar] [CrossRef]
- Jackson, R.F.; Goergen, S.M. A crystalline difructose anhydride from hydrolyzed inulin. J. Res. Nat. Bur. Stand. 1929, 3, 27–38. [Google Scholar] [CrossRef]
- Defaye, J.; García Fernández, J.M. Protonic and thermal activation of sucrose and the oligosaccharide composition of caramel. Carbohydr. Res. 1994, 256, C1–C4. [Google Scholar] [CrossRef]
- Manley-Harris, M.; Richards, G.N. Dihexulose dianhydrides. Adv. Carbohydr. Chem. Biochem. 1997, 52, 207–239. [Google Scholar] [CrossRef]
- Defaye, J.; García Fernández, J.M. The oligosaccharide components of caramel. Zuckerind. 1995, 120, 700–704. [Google Scholar]
- Manley-Harris, M.; Richards, G.N. Di-d-fructose dianhydrides and related oligomers from thermal treatments of inulin and sucrose. Carbohydr. Res. 1996, 287, 183–202. [Google Scholar] [CrossRef]
- Christian, T.J.; Manley-Harris, M.; Field, R.J.; Parker, B.A. Kinetics of formation of di-d-fructose duanhydrides during thermal treatment of inulin. J. Agric. Chem. 2000, 48, 1823–1837. [Google Scholar] [CrossRef]
- Ratsimba, V.; García Fernández, J.M.; Defaye, J.; Nigay, H.; Voilley, A. Qualitative and quantitative evaluation of mono- and disaccharides in d-fructose, d-glucose and sucrose caramels by gas-liquid chromatography-mass spectrometry: Di-d-fructose dianhydrides as tracers of caramel authenticity. J. Chromatogr. A 1999, 884, 283–293. [Google Scholar]
- Ruíz-Matute, A.I.; Soria, A.C.; Martínez-Castro, I.; Sanz, M.L. A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J. Agric. Food Chem. 2007, 55, 7264–7269. [Google Scholar] [CrossRef]
- Montilla, A.; Ruíz-Matute, A.I.; Sanz, M.L.; Martínez-Castro, I.; del Castillo, M.D. Difructose anhydrides as quality markers of honey and coffee. Food Res. Int. 2006, 39, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Delmée, E.; Cani, P.D.; Gual, G.; Knauf, C.; Burcelin, R.; Maton, N.; Delzenne, N.M. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci. 2006, 79, 1007–1013. [Google Scholar] [CrossRef]
- Chow, J.M. Probiotics and prebiotics: A brief overview. J. Renal Nutr. 2002, 12, 76–86. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Manchilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Tungland, B.C. Fructooligosaccharides and other fructans: Structures and occurrence, production, regulatory aspects, food applications and nutrional health significance. In Oligosaccharides in Food and Agriculture. ACS Symposium Series; ACS: Washington, 2003; Vol. 849, pp. 135–152. [Google Scholar]
- Kobayashi, S.; Seki, K.; Haraguchi, K.; Kishimoto, M.; Nagata, K.; Honbo, K.; Kaimuna, K.; Kadoma, M. JP 63269962 A2; 881108 Showa, 1998. [Chem. Abstr. 1989; 111:56162].
- Reddy, B.S.; Rivenson, A. Inhibitory Effect of Bifidobacterium longum on Colon, Mammary, and Liver Carcinogenesis Induced by 2-Amino-3-methylimidazo[4,5-f]quinoline, a Food Mutagen. Cancer Res. 1993, 53, 1799–1810. [Google Scholar]
- Hidaka, H.; Hirayama, M. Useful characteristics and commercial applications of fructo-oligosaccharides. Biochem. Soc. Trans. 1991, 19, 561–565. [Google Scholar]
- Mitsuoka, T. Bifidobacteria and their role in human health. J. Ind. Microbiol. 1990, 6, 263–268. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Bezkorovainy, A. Inhibition of Escherichia-coli by bifidobacteria. J. Food. Protection 1993, 56, 713–715. [Google Scholar]
- Wilhelm, M.P.; Lee, D.T.; Rosenblatt, J.E. Bacterial interference by anaerobic species isolated from human feces. Eur. J. Clin. Microbiol. 1987, 6, 266–270. [Google Scholar] [CrossRef]
- Orban, J.I.; Patterson, J.A.; Surron, A.L.; Richards, G.N. Effect of sucrose thermal oligosaccharide caramel, dietary vitamin-mineral level, and brooding temperature on growth and intestinal bacterial populations of broiler chickens. Poultry Sci. 1997, 76, 482–490. [Google Scholar] [CrossRef]
- Stoppok, E.; Walter, M.; Wullbrandt, D. Beverage with storage-stable prebiotic difructose dianhydride III dietary fiber additive. WO 2003020054 A2.
- Mineo, H.; Hara, H.; Kikuchi, H.; Sakurai, H.; Tomita, F. Various indigestible saccharides enhance net calcium transport from the epithelium of the small and large intestine of rats in vitro. J. Nutr. 2001, 131, 3243–3246. [Google Scholar]
- Mineo, H.; Amano, M.; Chiji, H.; Shigematsu, N.; Tomita, F.; Hara, H. Indigestible saccharides open tight junctions and enhance net calcium, magnesium and zinc absorption in isolated rat small intestinal epithelium. Dig. Dis. Sci. 2004, 49, 122–132. [Google Scholar] [CrossRef]
- Suzuki, T.; Hara, H.; Kasai, T.; Tomita, F. Effects of difructose anhydride III on calcium absorption in small and large intestines of rats. Biosci. Biotechnol. Biochem. 1998, 62, 837–841. [Google Scholar] [CrossRef]
- Mineo, H.; Amano, M.; Chiji, H.; Shigematsu, N.; Tomita, F.; Hara, H. Absorptive activity of calcium in the isolated cecal epithelium adaptively increased by 2 week’s feeding of difructose anhydride III in rats. Biosci. Biotechnol. Biochem. 2003, 67, 1847–1851. [Google Scholar] [CrossRef]
- Mitamura, R.; Hara, H.; Aoyama, Y.; Chiji, H. Supplemental feeding of difructose anhydride III restores calcium absorption impaired by ovariectomy in rats. J. Nutr. 2002, 132, 3387–3393. [Google Scholar]
- Mitamura, R.; Hara, H. Prolonged feeding of difructose anhydride III increases strength and mineral concentrations of the femur in ovariectomized rats. Br. J. Nutr. 2005, 94, 268–274. [Google Scholar]
- Although di-β-d-fructofuranose-2,6’:6,2’-dianhydride (DFA IV) is not a spiroacetalic compound, it has been considered a relevant member of the DFA family in this review.
- Mineo, H.; Amano, M.; Minaminida, K.; Chiji, H.; Shigematsu, N.; Tomita, F.; Hara, H. Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. Nutrition 2006, 22, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Mineo, H.; Hara, H.; Shigematsu, N.; Okuhara, Y.; Tomita, F. Melibiose, difructose anhydride III and difructose dianhydride IV enhance net calcium absorption in rat small and large intestinal epithelium by increasing the passage of tight junctions in vitro. J. Nutr. 2002, 132, 3394–3399. [Google Scholar]
- Afsana, K.; Shiga, K.; Ishizuka, S.; Hara, H. Ingestion of an indigestible saccharide, difructose anhydride III, partially prevents the tannic acid induced suppression of iron absorption in rats. J. Nutr. 2003, 133, 3553–3560. [Google Scholar]
- Shiga, K.; Hara, H.; Okano, G.; Ito, M.; Minami, A.; Tomita, F. Ingestion of difructose anhydride III and voluntary running exercise independently increase femoral and tibial bone mineral density and bone strength with increasing calcium absorption in rats. J. Nutr. 2003, 133, 4207–4211. [Google Scholar]
- Shigematsu, N.; Okuhara, Y.; Kise, M.; Tomita, K.; Hatiya, Y.; Tomi, H.; Kikuchi, H.; Hara, H.; Nakata, R. The efficiency of combination intake with iron and DFA III (Twintose) on female college students. Seito Gijutsu Kenkyu Kaishi 2006, 54, 9–14. [Google Scholar]
- Tomita, K.; Shiomi, T.; Okuhara, Y.; Tamura, A.; Shigematsu, N.; Hara, A. Ingestion of difructose anhydride III enhances absorption and retention of calcium in healthy men. Biosci. Biotechnol. Biochem. 2007, 71, 681–687. [Google Scholar] [CrossRef]
- Godshall, M.A. Future directions for the sugar industry. Int. Sugar J. 2001, 103, 378–384. [Google Scholar]
- Schiweck, H.; Rapp, K.; Vogel, M. Utilization of sucrose as an industrial bulk chemical state of the art and future implications. Chem. Ind. 1988, 228–234. [Google Scholar]
- Angyal, S.J.; Craig, D.C.; Defaye, J. ; Gadelle, A. Complexes of carbohydrates with metal cations. XVI. Di-d-fructose and di-l-sorbose dianhydrides. Can. J. Chem. 1990, 68, 1140–1144. [Google Scholar] [CrossRef]
- Bock, K.; Pedersen, C.; Defaye, J.; Gadelle, A. Steric and electronic effects in the formation of dihexulose dianhydrides. Reaction of racemic sorbose in anhydrous hydrogen fluoride and a facile synthesis of d-sorbose. Carbohydr. Res. 1991, 216, 141–148. [Google Scholar]
- Angyal, S.J. Complexes of metal cations with carbohydrates in solution. Adv. Carbohydr. Chem. Biochem. 1989, 47, 1–43. [Google Scholar] [CrossRef]
- García Fernández, J.M.; Gadelle, A.; Defaye, J. Difructose dianhydrides from sucrose and fructo-oligosaccharides and their use as building blocks for the preparation of amphiphiles, liquid crystals, and polymers. Carbohydr. Res. 1994, 265, 249–269. [Google Scholar] [CrossRef]
- Sakurai, H.; Yokota, A.; Tomita, F. A new perspective on inulin as a carbohydrate resource. Biosci. Ind. 1993, 75, 9–12. [Google Scholar]
- Saito, K.; Tomita, F. Difructose Anhydrides: Their mass-production and physiological functions. Biosci. Biotechnol. Biochem. 2000, 64, 1321–1327. [Google Scholar]
- Tomita, F.; Yokota, A.; Kasai, T.; Hara, H.; Sayama, K. An efficient production of DFA III and its potential utility as a physiologically functional food. In Food for health in the pacific rim; Whitaker, J.R., Haards, N.F., Shoemaker, C.F., Singh, R.P., Eds.; Food Nutrition Press: Trumbull, CN, USA, 1999; pp. 353–362. [Google Scholar]
- Defaye, J.; García Fernández, J.M. Synthesis of dispirodioxanyl pseudo-disaccharides by selective protonic activation of isomeric glycosylfructoses in anhydrous hydrogen fluoride. Carbohydr. Res. 1994, 251, 17–31. [Google Scholar] [CrossRef]
- Defaye, J.; García Fernández, J.M. Protonic reactivity of sucrose in anhydrous fluoride. Carbohydr. Res. 1994, 251, 1–15. [Google Scholar] [CrossRef]
- Defaye, J.; García Fernández, J.M. Selective protonic activation of isomeric glycosylfructoses with pyridinium poly(hydrogen fluoride) and synthesis of spirodioxanyl oligosaccharides. Carbohydr. Res. 1992, 237. 223-247 and references therein. [Google Scholar]
- Defaye, J.; Gadelle, A.; Pedersen, C. The behaviour of d-fructose and inulin towards anhydrous hydrogen fluoride. Carbohydr. Res. 1985, 136, 53–65. [Google Scholar] [CrossRef]
- García Fernández, J.M.; Ortiz Mellet, C.; Defaye, J. Sulfur atom participation in thiooligosaccharide chemistry: Synthesis of 1'-thiotrehalulose and 1'-epi-thiotrehalulose and comparative reactivity with the O-linked disaccharide analogue, Trehalulose. J. Org. Chem. 1998, 63, 3572–3580. [Google Scholar]
- García Fernández, J.M.; Schnelle, R.-R.; Defaye, J. Stereoselective synthesis of di-β-d-fructofuranose 1,2’:2,1’-dianhydride, a spirodioxanyl pseudodisaccharide with metal cation complexing properties. Tetrahedron: Asymmetry 1995, 6, 307–312. [Google Scholar] [CrossRef]
- Lichtenthaler, F.W. Towards improving the utility of ketoses as organic raw materials. Carbohydr. Res. 1998, 313, 69–89. [Google Scholar] [CrossRef]
- Benito, J.M.; Gómez García, M.; Ortiz Mellet, C.; García Fernández, J.M.; Defaye, J. Carbohydrate-derived spiroketals. Stereoselective synthesis of di-d-fructose dianhydrides by boron trifluoride promoted glycosylation-spiroketalization of acetal precursors. Org. Lett. 2001, 3, 549–552. [Google Scholar] [CrossRef]
- Ishihara, K. Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim, 2000; Vol.1, pp. 89–133. [Google Scholar]
- Toshima, K.; Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 1993, 93, 1503–1531. [Google Scholar] [CrossRef]
- Li, X.; Takahashi, H.; Ohtake, H.; Shiro, M.; Ikegami, S. Stereoselective synthesis and structure elucidation of spiro-ketodisaccharides. Tetrahedron 2001, 57, 8053–8066. [Google Scholar]
- Dondoni, A.; Marra, A.; Scherrmann, M.-C.; Bertolasi, V. Chemical synthesis of linear and cyclic unnatural oligosaccharides by iterative glycosidation of ketoses. Chem. Eur. J. 2001, 7, 1371–1382. [Google Scholar] [CrossRef]
- Benito, J.M.; Rubio, E.; Gómez García, M.; Ortiz Mellet, C.; García Fernández, J.M. Carbohydrate-derived spiroketals: stereoselective synthesis of di-d-fructose dianhydrides. Tetrahedron 2004, 60, 5899–5906. [Google Scholar] [CrossRef]
- Kaji, E.; Saiga, R.; Kurimoto, E.; Nishino, T. Catalytic, stereoselective glycosylation–spiroketalization of 3,4,6-tri-O-benzyl-β-d-fructofuranose generating di-d-fructofuranose-1,2’:2,1’-dianhydride. Heterocycles 2006, 69, 385–393. [Google Scholar] [CrossRef]
- Balbuena, P.; Rubio, E.R.; Ortiz Mellet, C.; García Fernández, J.M. The o-xylylene protecting group as an element of conformational control of remote stereochemistry in the synthesis of spiroketals. Chem. Commun. 2006, 2610–2612. [Google Scholar]
- García-Moreno, M.I.; Aguilar, M.; Ortiz Mellet, C.; García Fernández, J.M. Intramolecular benzyl protection delivery: A practical synthesis of DMDP and DGDP from d-fructose. Org. Lett. 2006, 8, 297–299. [Google Scholar] [CrossRef]
- Balbuena, P.; Lesur, D.; González Álvarez, M.J.; Mendicuti, F.; Ortiz Mellet, C.; García Fernández, J.M. One-pot regioselective synthesis of 2I,3I-O-(o-xylylene)-capped cyclomaltooligosaccharides: tailoring the topology and supramolecular properties of cyclodextrins. Chem. Commun. 2007, 3270–3272. [Google Scholar]
- The notion of intramolecular aglycon delivery refers to transformations involving an intramolecular glycosylation reaction in which the acceptor and the donor moieties are linked through a tether that controls the stereochemical outcome, to produce product distributions different from those obtained in the intermolecular process, and that can be removed at a later stage. See ref. 78 and 82.
- Barresi, F.; Hindsgaul, O. The synthesis of β-mannopyranosides by intramolecular aglycon delivery: scope and limitations of the existing methodology. Can. J. Chem. 1994, 72, 1447–1465. [Google Scholar] [CrossRef]
- Barresi, F.; Hindsgaul, O. Improved synthesis of β-mannopyranosides by intramolecular aglycon delivery. Synlett 1992, 759–761. [Google Scholar] [CrossRef]
- Barresi, F.; Hindsgaul, O. Synthesis of β-mannopyranosides by intramolecular aglycon delivery. J. Am. Chem. Soc. 1991, 113, 9376–9377. [Google Scholar]
- Stork, G.; La Clair, J.J. Stereoselective synthesis of β-mannopyranosides via the temporary silicon connection method. J. Am. Chem. Soc. 1996, 118, 247–248. [Google Scholar] [CrossRef]
- Stork, G.; Kim, G. Stereocontrolled synthesis of disaccharides via the temporary silicon connection. J. Am. Chem. Soc. 1992, 114, 1087–1088. [Google Scholar] [CrossRef]
- The term “contra-thermodynamic” designates diastereomers that are energetically strongly disfavoured and consequently, cannot be accessed under reversible kinetics or thermodynamic conditions. For remarkable recent examples of stereoselective syntheses of contra-thermodynamic spiroketal frameworks, see ref. [84] and [85].
- Takaoka, L.R.; Buckmelter, A.J.; LaCruz, T.E.; Rychnovsky, S.D. Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations. J. Am. Chem. Soc. 2005, 127, 528–529. [Google Scholar]
- La Cruz, T.E.; Rychnovsky, S.D. Synthesis of the spirofungin B core by a reductive cyclization strategy. Org. Lett. 2005, 7, 1873–1875. [Google Scholar] [CrossRef]
- Müller, M.; Huchel, U.; Geyer, A.; Schmidt, R.R. Efficient intramolecular glycosylation supported by a rigid spacer. J. Org. Chem. 1999, 64, 6190–6201. [Google Scholar] [CrossRef]
- Jung, K.-H.; Müller, M.; Schmidt, R.R. Intramolecular o-glycoside bond formation. Chem. Rev. 2000, 100, 4423–4442. [Google Scholar] [CrossRef]
- Müller, M.; Schmidt, R.R. Synthesis of trisaccharides and tetrasaccharides by means of intramolecular glycosylation supported by rigid spacers. Eur. J. Org. Chem. 2001, 2055–2066. [Google Scholar]
- Rubio, E.M.; Ortiz Mellet, C.; García Fernández, J.M. Carbohydrate-derived spiroketals: stereoselective synthesis of di-d-fructose dianhydrides via intramolecular aglycon delivery. Org. Lett. 2003, 5, 873–876. [Google Scholar] [CrossRef]
- Rubio, E.M.; García-Moreno, M.I.; Balbuena, P.; Lahoz, F.J.; Álvarez, E.; Ortiz Mellet, C.; García Fernández, J.M. Spacer-mediated synthesis of contra-thermodynamic spiroacetals: stereoselective synthesis of C2-symmetric difructose dianhydrides. J. Org. Chem. 2006, 71, 2257–2266. [Google Scholar] [CrossRef]
- Rubio, E.M.; García-Moreno, M.I.; Balbuena, P.; Ortiz Mellet, C.; García Fernández, J.M. Rigid spacer-mediated synthesis of bis-spiroketal ring systems: stereoselective synthesis of nonsymmetrical spiro disaccharides. Org. Lett. 2005, 7, 729–731. [Google Scholar] [CrossRef]
- Louis, F.; García-Moreno, M.I.; Balbuena, P.; Ortiz Mellet, C.; García Fernández, J.M. Spacer-Mediated Synthesis of Bis-Spiroketal Disaccharides: Nonsymmetrical Furanose-Pyranose Difructose Dianhydrides. Synlett 2007, 2738–2742. [Google Scholar]
- Louis, F.; García-Moreno, M.I.; Balbuena, P.; Ortiz Mellet, C.; García Fernández, J.M. Stereoselective synthesis of nonsymmetrical difructose dianhydrides from xylylene-tethered d-fructose precursors. Tetrahedron 2008, 64, 2792–2800. [Google Scholar] [CrossRef]
- Shlubach, H.H.; Knoop, H. Tests about natural polylavane. V. The carbohydrates of Jerusalem artichoke II. Justus Liebigs Ann. Chem. 1933, 504, 19–30. [Google Scholar] [CrossRef]
- Uchiyama, T.; Niwa, S.; Tanaka, K. Purification and properties of Arthrobacter ureafaciens inulase II. Biochim. Biophys. Acta 1973, 315, 412–420. [Google Scholar] [CrossRef]
- Tanaka, K.; Uchiyama, T.; Ito, A. Formation of di-d-fructofuranose 1,2’:2,3’ dianhydride from inulin by an extracellular inulase of Arthrobacter ureafaciens. Biochim. Biophys. Acta 1972, 284, 248–256. [Google Scholar] [CrossRef]
- Uchiyama, T. Science and technology of fructans. Suzuki, M., Chattertown, N.J., Eds.; CRC: Boca Raton, Florida, 1993; pp. 170–190. [Google Scholar]
- Saito, K.; Tomita, F. Difructose anhydrides: Their mass-production and physiological functions. Biosci. Biotechnol. Biochem. 2000, 64, 1321–1327. [Google Scholar] [CrossRef]
- Kawamura, M.; Uchiyama, T. Chemistry and production of di-d-fructose dianhydrides. In Recent advances in fructooligosaccharides research; Norio, S., Noureddine, B., Shuichi, O., Eds.; Research Signpost: Kerala, India, 2007; pp. 273–296. [Google Scholar]
- Uchiyama, T. Action of Arthrobacter ureafaciens inulinase II on several oligofructans and bacterial levans. Biochim. Biophys. Acta 1975, 397, 153–163. [Google Scholar] [CrossRef]
- Tanaka, K.; Kawaguchi, H.; Ohno, K.; Shohji, K. Enzymic formation of difructose anhydride IV from bacterial levan. J. Biochem. 1981, 90, 1545–1548. [Google Scholar]
- Tanaka, K.; Uchiyama, T.; Yamamuchi, K.; Suzuki, Y.; Hashiguchi, S. Formation of a di-d-fructose dianhydride from levan by Arthrobacter ureafaciens. Carbohydr. Res. 1982, 99, 197–204. [Google Scholar] [CrossRef]
- Tanaka, K.; Karigane, T.; Yamaguchi, F.; Nishikawa, S.; Yoshida, N. Action of levan fructotransferase of Arthrobacter ureafaciens on levanoligosaccharides. J. Biochem. 1983, 94, 1569–1578. [Google Scholar]
- Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. 2004. Supplement 10. Available online: http://www.chem.qmul.ac.uk/iubmb/enzyme/supplements/sup2004.
- Seki, K.; Haraguchi, K.; Kishimoto, S.; Kobayashi, S.; Kainuma, K. Production of a novel inulin fructotransferase (DFA I-producing) by Arthrobacter globoformis S14-3. Starch-Stärke 1988, 40, 440–442. [Google Scholar] [CrossRef]
- Seki, K.; Haraguchi, K.; Kishimoto, S.; Kobayashi, S.; Kainuma, K. Purification and properties of a novel inulin fructotransferase (DFA I-producing) from Arthrobacter globoformis S14-3. Agric. Biol. Chem. 1989, 53, 2089–2090. [Google Scholar] [CrossRef]
- Kushibe, S.; Sashida, R.; Morimoto, Y.; Ohkishi, H. Purification and characterization of a di-d-fructofuranose 1,2’:2,1’-dianhydride producing enzyme from Streptomyces sp. MCI-2524. Biosci. Biotechnol. Biochem. 1993, 57, 2054–2058. [Google Scholar] [CrossRef]
- Haraguchi, K.; Yoshida, M.; Ohtsubo, K. Purification and properties of a heat-stable inulin fructotransferase from Arthrobacter ureafaciens. Biotechnol. Lett. 2003, 25, 1049–1053. [Google Scholar] [CrossRef]
- Haraguchi, K.; Yoshida, M.; Yamanaka, T.; Ohtsubo, K. Purification and characterization of a heat stable inulin fructotransferase (DFA I-producing) from Arthrobacter pascens a62-1. Carbohydr. Polym. 2003, 53, 501–505. [Google Scholar] [CrossRef]
- Manley-Harris, M.; Nicholson, B.K.; Thompson, R.A. The structure of hexa-O-acetyl-α-d-fructofuranose-β-d-fructofuranose 1,2’:2,6’-dianhydride. J. Carbohydr. Chem. 2003, 22, 1–8. [Google Scholar] [CrossRef]
- Matsuyama, T.; Tanaka, K.; Uchiyama, T. Isolation and identification of the Aspergillus fumigatus difructose dianhydride. Agric. Biol. Chem. 1991, 55, 1413–1414. [Google Scholar] [CrossRef]
- Yokota, A.; Hirayama, S.; Enemoto, K.; Miura, Y.; Takao, S.; Tomita, F. Production of inulin fructotransferase (depolymerizing) by Arthrobacter sp. H65-7 and preparation of DFA III from inulin by the enzyme. J. Ferment. Bioeng. 1991, 72, 258–261. [Google Scholar] [CrossRef]
- Yokota, A.; Enemoto, K.; Tomita, F. Purification and properties of an inulin fructotransferase (depolymerizing) from Arthrobacter sp. H65-7. J. Ferment. Bioeng. 1991, 72, 262–265. [Google Scholar] [CrossRef]
- Saito, K.; Goto, H.; Yokota, A.; Tomita, F. Purification of levan fructotransferase from Arthrobacter nicotinovarorans GS-9 and production of DFA IV from levan by the enzyme. Biosci. Biotechnol. Biochem. 1997, 61, 1705–1709. [Google Scholar] [CrossRef]
- Haraguchi, K.; Yoshida, M.; Ohtsubo, K. Thermostable inulin fructotransferase (DFA III-producing) from Arthrobacter sp. L68-1. Carbohydr. Polym. 2005, 59, 411–416. [Google Scholar] [CrossRef]
- Haraguchi, K.; Yoshida, M.; Ohtsubo, K. Inulin fructotransferase (DFA III-producing) from Leifsonia sp. T88-4. Carbohydr. Polym. 2006, 66, 75–80. [Google Scholar] [CrossRef]
- Cha, J.; Park, N.H.; Yang, S.J.; Lee, T.H. Molecular and enzymatic characterization of a levan fructotransferase from Microbacterium sp. AL-210. J. Biotechnol. 2001, 91, 49–61. [Google Scholar] [CrossRef]
- Jang, K.-H.; Ryu, E.-J.; Park, B.-S.; Song, K.-B.; Kang, S.A.; Kim, C.H.; Uhm, T.-B.; Park, Y.-I.; Rhee, S.-K. Levan fructotransferase from Arthrobacter oxydans J17-21 catalyzes the formation of the di-d-fructose dianhydride IV from levan. J. Agric. Food. Chem. 2003, 51, 2635–2636. [Google Scholar]
- Jang, K.-H.; Jang, E.-K.; Kim, S.H.; Kim, I.-H.; Kang, S.A.; Koh, I.; Park, Y.-I.; Kim, Y.-J.; Ha, S.-D.; Kim, C.H. High-level production of low-branched levan from Pseudomonas aurantiaca S-4380 for the production of di-β-d-fructose dianhydride IV. J. Microbiol. Biotechnol. 2006, 16, 102–108. [Google Scholar]
- Jang, E.-K.; Jang, K.-H.; Koh, I.; Kim, I.-H.; Kim, S.H.; Kang, S.A.; Kim, C.H.; Ha, S.-D.; Rhee, S.-K. Molecular characterization of the levansucrase gene from Pseudomonas aurantiaca S-4380 and its expression in Escherichia coli. J. Microbiol. Biotechnol. 2002, 12, 603–609. [Google Scholar]
- Takesue, N.; Sone, T.; Tanaka, M.; Tomita, F.; Asano, K. Production of di-d-fructofranosyl-2,6’:6,2’-anhydride (DFA IV) by recombinant Bacillus subtilis carrying heterogenous levan fructotransferase from Arthrobacter nicotinovorans GS-9. Enzyme Microb. Tech. 2007, 41, 673–676. [Google Scholar] [CrossRef]
- Saito, K.; Sumita, Y.; Nagasaka, Y.; Tomita, F.; Yolota, A. Molecular cloning of the gene encoding the di-d-fructofuranose 1,2’:2,3’ dianhydride hydrolysis enzyme (DFA IIIase) from Arthrobacter sp. H65-7. J. Biosci. Bioeng. 2003, 95, 528–540. [Google Scholar]
- Haraguchi, K.; Mori, S.; Kiyoshi, H. Cloning of inulin fructotransferase (DFA III-producing) gene from Arthrobacter globoformis C11-1. J. Biosci. Bioeng. 2000, 89, 590–595. [Google Scholar] [CrossRef]
- Eun-Kyung, J.; Jang, K.-H.; Koh, I.; Kim, I.-H.; Kim, S.-H.; Kang, S.A.; Kim, C.H.; Ha, S.-D.; Rhee, S.-K. Molecular characterization of the levansucrase from Pseudomonas aurantiaca S-4380 and its expression in Escherichia coli. J. Microbiol. Biotechnol. 2002, 12, 603–609. [Google Scholar]
- Sakurai, H.; Yokota, A.; Tomita, F. Molecular cloning of an inulin fructotransferase (depolymerizing) gene from Arthrobacter sp. H65-7 and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 1997, 61, 87–92. [Google Scholar] [CrossRef]
- Saito, K.; Yokota, A.; Tomita, F. Molecular cloning of levan fructotransferase gene from Arthrobacter nicotinovorans GS-9 and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 1997, 61, 2076–2079. [Google Scholar] [CrossRef]
- Lim, S.; Lee, K.-Y.; Lee, Y.-B.; Song, K.-B. Immobilization of levan fructotransferase for the production di-fructose anhydride from levan. Biotechnol. Lett. 2001, 23, 1335–1339. [Google Scholar] [CrossRef]
- Haraguchi, K.; Yamanaka, T.; Ohtsubo, K. Purification and properties of a heat stable inulin fructotransferase (DFA III-producing) from Arthrobacter sp. T13-2. Carbohydr. Polym. 2002, 50, 117–121. [Google Scholar] [CrossRef]
- Jahnz, U.; Schubert, M.; Baars-Hibbe, H.; Vorlop, K.-D. Process for producing the potential food ingredient DFA III from inulin: screening, genetic engineering, fermentation and immobilization of inulase II. Int. J. Pharm. 2003, 256, 199–206. [Google Scholar] [CrossRef]
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
García-Moreno, M.I.; Benito, J.M.; Mellet, C.O.; Fernández, J.M.G. Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs). Molecules 2008, 13, 1640-1670. https://doi.org/10.3390/molecules13081640
García-Moreno MI, Benito JM, Mellet CO, Fernández JMG. Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs). Molecules. 2008; 13(8):1640-1670. https://doi.org/10.3390/molecules13081640
Chicago/Turabian StyleGarcía-Moreno, M. Isabel, Juan M. Benito, Carmen Ortiz Mellet, and José M. García Fernández. 2008. "Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs)" Molecules 13, no. 8: 1640-1670. https://doi.org/10.3390/molecules13081640
APA StyleGarcía-Moreno, M. I., Benito, J. M., Mellet, C. O., & Fernández, J. M. G. (2008). Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs). Molecules, 13(8), 1640-1670. https://doi.org/10.3390/molecules13081640