New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of 3,5-di-O-acyl resveratrol derivatives 4a-d
2.2. Aromatic hydroxylation of compounds 4a-d
2.3. Evaluation of the antioxidant activity of 5a-d
3. Experimental
3.1. Materials and methods
3.2. Preparation of 3,5-di-O-acyl piceatannol derivatives 5a-d
3.3. Aromatic hydroxylation of 3,5-di-O-acyl resveratrol derivatives 4a-d
3.4. Acetylation of 3,5-di-O-acetyl piceatannol (5a)
3.5. Measure of antioxidant activity of compounds 5a-d
4. Conclusions
Acknowledgments
References and Notes
- Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jager, W. Resveratrol analogues as selective cyclooxygenase-2-inhibitors: Synthesis and structure-activity relationship. Bioorg. Med. Chem. 2004, 12, 5571–5578. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Jager, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure-activity relationship. Biochem. Pharm. 2005, 69, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Riviére, C.; Richard, T.; Quentin, L.; Krisa, S.; Mérillon, J.M.; Monti, J.P. Inhibitory activity of stilbenes on Alzheimer’s B-amyloid fibrils in vitro. Bioorg. Med. Chem. 2007, 15, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976, 9, 77–86. [Google Scholar] [CrossRef]
- Siemann, E.H.; Creasy, L.L. Concentration of the phytoalexin resveratrol in wine. Am. J. Enol. Vitic. 1992, 43, 49–52. [Google Scholar]
- Renaud, S.; De Lorgeril, M. Wine, alcohol, platelets and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Fremont, L. Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef]
- Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Gusman, J.; Malonne, H.; Atassi, G. A reappraisal of the potential chemopreventive properties of resveratrol. Carcinogenesis 2001, 22, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat. Res. 2003, 523-524, 145–150. [Google Scholar] [CrossRef]
- Ramon, M.A.; Villegas, I.; La-Casa, C.; de La Lastra, A.C. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulate apoptosis during early colonic inflammation in rats. Biochem. Pharm. 2004, 67, 1399–1410. [Google Scholar]
- Tadolini, B.; Juliano, C.; Piu, L.; Franconi, F.; Cabrini, L. Resveratrol inhibition of lipid peroxidation. Free Radic. Res. 2000, 33, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Lembège-Varache, M.; Teguo, P.W.; Richard, T.; Monti, J.P.; Deffiuex, G.; Vercauteren, J.; Mérillon, J.M.; Nuhrich, A. Structure-activity relationships of polyhydroxystilbene derivatives extracted from Vitis vinifera cell cultures as inhibitors of human platetelet aggregation. Med. Chem. Res. 2000, 10, 253–267. [Google Scholar]
- Bavaresco, L.; Fregoni, M.; Trevisan, M.; Mattivi, F.; Vrhovsek, U.; Flachetti, R. The occurrence of the stilbene piceatannol in grapes. Vitis 2002, 41, 133–136. [Google Scholar]
- Ku, K.L.; Chang, P.S.; Cheng, Y.C.; Lien, C.Y. Production of stilbenoids from the callus of Arachis hypogaea: A novel source of the anticancer compound piceatannol. J. Agr. Food Chem. 2005, 53, 3877–3881. [Google Scholar] [CrossRef] [PubMed]
- Ferrigni, N.R.; Mclaughlin, J.L.; Powell, R.G.; Smith, C.R. Isolation of piceatannol as the antileukaemic principle from the seeds of Euphorbia lagascae. J. Nat. Prod. 1984, 47, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J. Resveratrol, pterostilbene and piceatannol in Vaccinium berries. J. Agr. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Tomas-Barberan, F.A.; Espin, J.C. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. Eur. J. Nutr. 2004, 43, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Wieder, T.; Prokop, A.; Bagci, B.; Essmann, F.; Bernicke, D.; Schulze-Osthoff, K.; Dorken, B.; Schmalz, H.G.; Daniel, P.T.; Henze, G. Piceatannol, a hydroxylated analogue of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 2001, 15, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Wieder, F.; Prokop, A.; Bagci, B.; Essmann, F.; Bernicke, D.; Schulze-Osthoff, K.; Dorken, B.; Schmalz, H.G.; Daniel, P.T.; Henze, G. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 2001, 15, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Tomas-Barberan, F.A.; Espin, J.C. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. J. Nutr. 2002, 13, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Ovesna, Z.; Kozics, K.; Bader, Y.; Saiko, P.; Handler, N.; Erker, T.; Szkeres, T. Antioxidant activity of resveratrol, piceatannol and 3,3’,4,4’,5,5’-hexahydroxy-trans-stilbene in three leukemia cell lines. Oncol. Rep. 2006, 16, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; Farmer, P.B.; Stanley, L.A.; Burke, M.D. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 2002, 86, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.I.; Wei, Q.Y.; Fang, J.G.; Yang, L.; Liu, Z.L.; Wyche, J.H.; Han, Z. The 3,4-dihydroxyl groups are important for trans-resveratrol analogs to exhibit enhanced antioxidant and apoptotic activities. Anticancer Res. 2004, 24, 999–1002. [Google Scholar] [PubMed]
- Visioli, F.; Galli, C. Olive oil phenols and their potential effects on human health. J. Agric. Food Chem. 1998, 46, 4292–4296. [Google Scholar] [CrossRef]
- Tuck, K.L.; Hayball, P.J.; Stupans, I. Structural characterization of the metabolites of hydroxytyrosol, the principal phenolic component in olive oil, in rats. J. Agric. Food Chem. 2002, 50, 2404–2409. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Espinoza, M.C.; Villeneuve, P. Phenolic acids enzymatic lipophilization. J. Agric. Food Chem. 2005, 53, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Buisman, G.J.H.; Helteren, C.T.W.; Kramer, G.F.H.; Veldsink, J.W.; Derksen, J.T.P.; Cuperus, F.P. Enzymatic esterification of functionalized phenols for the synthesis of lipophilic antioxidants. Biotecn. Lett. 1998, 20, 131–136. [Google Scholar] [CrossRef]
- Pignataro, B.; Sardone, L.; Marletta, G. Self-organizing fiberlike nanostructures and wrapping-up processes in Languimir-Blodgett films. Langmuir 2003, 19, 5912–5917. [Google Scholar] [CrossRef]
- Bernini, R.; Mincione, E.; Barontini, M.; Crisante, F. Method for preparing hydroxytyrosol and hydroxytyrosol derivatives. WO Pat. 2008110908, 2008. [Google Scholar]
- Bernini, R.; Mincione, E.; Barontini, M.; Crisante, F. Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol. J. Agric. Food Chem. 2008, 56, 8897–8904. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Cacchi, S.; Fabrizi, G.; Filisti, E. 2-Arylhydroxytyrosol derivatives via Suzuki-Miyaura cross-coupling. Org. Lett. 2008, 10, 3457–3460. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Mincione, E.; Crisante, F.; Barontini, M.; Fabrizi, G. A novel use of the recyclable polymer-supported IBX: An efficient chemoselective and regioselective oxidation of phenolic compounds. The case of hydroxytyrosol derivatives. Tetrahedron Lett. 2009, 50, 1307–1310. [Google Scholar] [CrossRef]
- Bernini, R.; Mincione, E.; Crisante, F.; Barontini, M.; Fabrizi, G. Oxidation of tyrosol derivatives using polymer-supported IBX. Synfacts 2009, 5, 571. [Google Scholar]
- Bernini, R.; Barontini, M.; Mosesso, P.; Pepe, G.; Willför, S.M.; Sjöholm, R.E.; Eklund, P.C.; Saladino, R. A selective de-O-methylation of guaiacyl lignans to corresponding catechol derivatives by 2-iodoxybenzoic acid (IBX). The role of the catechol moiety on the toxicity of lignans. Org. Bio. Chem. 2009, 7, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Crisante, F.; Barontini, M.; Fabrizi, G. A new and efficient route for the synthesis of naturally occurring catecholamines. Synthesis 2009, 22, 3838–3842. [Google Scholar] [CrossRef]
- Hartmann, C.; Mayer, V. Ueber Jodobenzoësäure. Chem. Ber. 1893, 26, 1727–1732. [Google Scholar] [CrossRef]
- Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: London, UK, 1997. [Google Scholar]
- Zhdankin, V.V.; Stang, P.J. Recent development in the chemistry of polyvalent iodinee compounds. Chem. Rev. 2002, 102, 2523–2584. [Google Scholar] [CrossRef] [PubMed]
- Ladziata, U.; Zhadankin, V.V. Hypervalent iodine (V) reagents in organic synthesis. ARKIVOC 2006, IX, 26–58. [Google Scholar] [CrossRef]
- Magdziak, D.; Rodriguez, A.A.; Van De Water, R.W.; Pettus, T.R.R. Regioselective oxidation of phenols to o-quinones with o-iodoxybenzoic acid. Org. Lett. 2002, 4, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Ozanne, A.; Pouységu, L.; Depernet, D.; Francois, B.; Quideau, S. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers. Org. Lett. 2003, 5, 2903–2906. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Pouysegu, L.; Deffieux, D.; Ozanne, A.; Gagnepain, J.; Fabre, I.; Oxoby, M. Iodane-mediated and electrochemical oxidative transformations of 2-methoxy-and 2-methylphenols. Arkivoc 2003, VI, 106–119. [Google Scholar]
- Ulrich, R.; Hofrichter, M. Enzymatic hydroxylation of aromatic compounds. Cell. Mol. Life Sci. 2007, 64, 271–293. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berzet, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Nicolosi, G.; Spatafora, C.; Tringali, C. Chemo-enzymatic preparation of resveratrol derivatives. J. Mol. Cat. B Enzym. 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Cardile, V.; Lombardo, L.; Spatafora, C.; Tringali, C. Chemo-enzymatic synthesis and cell-growth inhibition activity of resveratrol analogues. Bioorg. Chem. 2005, 33, 22–33. [Google Scholar] [CrossRef] [PubMed]
- De Lucia, M.; Panzella, L.; Pezzella, A.; Napolitano, A.; D’Ischia, M. Plant catechols and their S-glutathionyl conjugates as antinitrosating agents: Expedient synthesis and remarkable potency of 5-S-glutathionylpiceatannol. Chem. Res. Toxicol. 2008, 21, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Teguo, P.W.; Fauconneau, B.; Deffieux, G.; Huguet, F.; Vercauteren, J.; Merillon, J.M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 1998, 61, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, M.; Santagostino, M.; Sputore, S. A user-friendly entry to 2-iodoxybenzoic acid (IBX). J. Org. Chem. 1999, 64, 4537–4538. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 5a-d are available from the authors. |
Entry | Solvent | T (°C) | Time (h) | Conv. (%) | Yield of 5a (%) |
---|---|---|---|---|---|
1 | Methanol | 0 | 1 | 20 | 20 |
2 | Methanol/Chloroform=1/1 | 0 | 1 | 70 | 68 |
3 | Dimethyl carbonate | 25 | 2 | 50 | 46 |
4 | Dimethyl sulfoxide | 25 | 1 | >98 | 95 |
Entry | Substrate | Time (h) | Conv. (%) | Yield (%) |
---|---|---|---|---|
1 | 4b | 1 | 92 | 5b: 88 |
2 | 4c | 2 | 90 | 5c: 84 |
3 | 4d | 2 | 90 | 5d: 82 |
Compound | SC50 (μM)a ± SD |
---|---|
5a | 35.6 ± 2.1 |
5b | 32.2 ± 2.5 |
5c | 30.0 ± 1.6 |
5d | 28.9 ± 1.4 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bernini, R.; Barontini, M.; Spatafora, C. New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX). Molecules 2009, 14, 4669-4681. https://doi.org/10.3390/molecules14114669
Bernini R, Barontini M, Spatafora C. New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX). Molecules. 2009; 14(11):4669-4681. https://doi.org/10.3390/molecules14114669
Chicago/Turabian StyleBernini, Roberta, Maurizio Barontini, and Carmela Spatafora. 2009. "New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX)" Molecules 14, no. 11: 4669-4681. https://doi.org/10.3390/molecules14114669
APA StyleBernini, R., Barontini, M., & Spatafora, C. (2009). New Lipophilic Piceatannol Derivatives Exhibiting Antioxidant Activity Prepared by Aromatic Hydroxylation with 2-Iodoxybenzoic Acid (IBX). Molecules, 14(11), 4669-4681. https://doi.org/10.3390/molecules14114669