Antimalarial Activity of Ultra-Short Peptides †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental
4.1. General procedures
4.2. Cell culture and antimalarial activity measurements
4.3. General synthesis procedure for tri- and tetrapeptides 1-9
Acknowledgements
References and Notes
- Alba, M.P.; Salazar, L.M.; Puentes, A.; Pinto, M.; Torres, E.; Patarroyo, M.E. 6746 SERA peptide analogues immunogenicity and protective efficacy against malaria is associated with short helix formation: Malaria protection associated with peptides helix shortening. Peptides 2003, 24, 999–1006. [Google Scholar] [CrossRef]
- Greenwood, B.; Mutabingwa, T. Malaria in 2002. Nature 2002, 415, 670–672. [Google Scholar] [CrossRef] [PubMed]
- Eda, K.; Eda, S.; Sherman, I.W. Identification of peptides targeting the surface of Plasmodium falciparum-infected erythrocytes using a phage display peptide library. Am. J. Trop. Med. Hyg. 2004, 71, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Rodrigues, M.; Prudencio, M.; Mota, M.M.; Haas, W. Antimalarial drugs-host targets (re)visited. Biotech. J. 2006, 1, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of plasmodium falciparum malaria. Nature 2005, 434, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature 2002, 415, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mahajan, A.; Chibale, K. Synthetic medicinal chemistry of selected antimalarial natural products. Bioorg. Med. Chem. 2009, 17, 2236–2275. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Jain, M.; Kaur, T.; Jain, R. Antimalarials from nature. Bioorg. Med. Chem. 2009, 17, 3229–3256. [Google Scholar] [CrossRef] [PubMed]
- Panosian, C.B. Economic access to effective drugs for falciparum malaria. Clin. Infect. Dis. 2005, 40, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Madapa, S.; Tusi, Z.; Sridhar, D.; Kumar, A.; Siddiqi, M.I.; Srivastava, K.; Rizvi, A.; Tripathi, R.; Puri, S.K.; Shiva, Keshava, G.B.; Shukla, P.K.; Batra, S. Search for new pharmacophores for antimalarial activity. Part I: Synthesis and antimalarial activity of new 2-methyl-6-ureido-4-quinolinamides. Bioorg. Med. Chem. 2009, 17, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Choia, S.J.; Parent, R.; Guillaume, C.; Deregnaucourt, C.; Delarbre, C.; Ojcius, D.M.; Montagne, J.J.; Célérier, M.L.; Phelipot, A.; Amiche, M.; Molgo, J.; Camadro, J.M.; Guette, C. Isolation and characterization of Psalmopeotoxin I and II: Two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett. 2004, 572, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Thongtan, J.; Saenboonrueng, J.; Rachtawee, P.; Isaka, M. An antimalarial tetrapeptide from the entomopathogenic fungus Hirsutella sp. BCC 1528. J. Nat. Prod. 2006, 69, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Linington, R.G.; González, J.; Urea, L.D.; Romero, L.I.; Ortega-Barra, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J. Nat. Prod. 2007, 70, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Palasarn, S.; Lapanun, S.; Sriklung, K. Paecilodepsipeptide A, an antimalarial and antitumor cyclohexadepsipeptide from the insect pathogenic fungus Paecilomyces cinnamomeus BCC 9616. J. Nat. Prod. 2007, 70, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Sabareesh, V.; Ranganayaki, R.S.; Raghothama, S.; Bopanna, M.P.; Balaram, H.; Srinivasan, M.C.; Balaram, P. Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J. Nat. Prod. 2007, 70, 715–729. [Google Scholar] [CrossRef] [PubMed]
- McPhail, K.L.; Correa, J.; Linington, R.G.; Gonzalez, J.; Ortega-Barra, E.; Capson, T.L.; Gerwick, W.H. Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod. 2007, 70, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Linington, R.G.; Clark, B.R.; Trimble, E.E.; Almanza, A.; Ureña, L.D.; Kyle, D.E.; Gerwick, W.H. Antimalarial peptides from marine cyanobacteria: Isolation and structural elucidation of Gallinamide A. J. Nat. Prod. 2009, 72, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Duffy, S.; Avery, V.M. Citronamides A and B, Tetrapeptides from the Australian sponge Citronia astra. J. Nat. Prod. 2009, 72, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Krugliak, M.; Feder, R.; Zolotarev, V.Y.; Gaidukov, L.; Dagan, A.; Ginsburg, H.; Mor, A. Antimalarial activities of Dermaseptin S4 derivatives. Antimicrob. Agents Chemother. 2000, 44, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- BenMohamed, L.; Thomas, A.; Druilhe, P. Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infect. Immun. 2004, 72, 4376–4384. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Calle, J.M.; Oliveira, G.A.; Nardin, E.H. Human CD4 T cells induced by synthetic peptide malaria vaccine are comparable to cells elicited by attenuated Plasmodium falciparum sporozoites. J. Immunol. 2005, 175, 7575–7585. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, G.; Uma, M.V.; Shivayogi, M.S.; Balaram, H. Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob. Agents Chemother. 2001, 45, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Liu, J.; Sijwali, P.; Gut, J.; Goldberg, D.E.; Rosenthal, P.J. Antimalarial effects of human immunodeficiency virus type 1 protease inhibitors differ from those of the aspartic protease inhibitor Pepstatin. Antimicrob. Agents Chemother. 2006, 50, 2207–2209. [Google Scholar] [CrossRef] [PubMed]
- Meinke, P.T.; Liberator, P. Histone deacetylase: A target for antiproliferative and antiprotozoal agents. Current Med. Chem. 2001, 8, 211–235. [Google Scholar] [CrossRef]
- Sathe, M.; Thavaselvam, D.; Srivastava, A.K.; Kaushik, M.P. Synthesis and antimalarial evaluation of cyclic β-amino acid-containing dipeptides. Molecules 2008, 13, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Andrews, K.T.; Fairlie, D.P.; Madala, P.K.; Ray, J.; Wyatt, D.M.; Hilton, P.M.; Melville, L.A.; Beattie, L.; Gardiner, D.L.; Reid, R.C.; Stoermer, M.J.; Skinner-Adams, T.; Berry, C.; McCarthy, J.S. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria. Antimicrob. Agents Chemother. 2006, 50, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Skillman, A.G.; Lee, C.E.; Habashita, H.; Gluzman, I.Y.; Ewing, T.J.A.; Goldberg, D.E.; Kuntz, I.D.; Ellman, J.A. Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J. Med. Chem. 1999, 42, 1428–1440. [Google Scholar]
- Rosenthal, P.J.; Wollish, W.S.; Palmer, J.T.; Rasnick, D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J. Clin. Invest. 1991, 88, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Darkin-Rattray, S.J.; Gurnett, A.M.; Myers, R.W.; Dulski, P.M.; Crumley, T.M.; Allocco, J.J.; Cannova, C.; Meinke, P.T.; Colletti, S.L.; Bednarek, M.A.; Singh, S.B.; Goetz, M.A.; Dombrowski, A.W.; Polishook, J.D.; Schmatz, D.M. Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA 1996, 93, 13143–13147. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.J.; Wollish, W.S.; Palmer, J.T.; Rasnick, D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J. Clin. Invest. 1991, 88, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.J.; Olson, J.E.; Lee, G.K.; Palmer, J.T.; Klaus, J.L.; Rasnick, D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob. Agents Chemother. 1996, 40, 1600–1603. [Google Scholar] [PubMed]
- Liu, Z.; Brady, A.; Young, A.; Rasimick, B.; Chen, K.; Zhou, C.; Kallenbach, N.R. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob. Agents Chemother. 2007, 51, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Bisht, G.S.; Rawat, D.S.; Kumar, A.; Kumar, R.; Pasha, S. Antimicrobial activity of rationally designed amino terminal modified peptides. Bioorg. Med. Chem. Lett. 2007, 17, 4343–4346. [Google Scholar] [CrossRef] [PubMed]
- Thathy, V.; Ménard, R. Gene targeting in Plasmodium berghei. Methods Mol. Med. 2002, 72, 317–331. [Google Scholar] [PubMed]
- Khalid, S.A.; Farouk, A.; Geary, T.G.; Jensen, J.B. Potential antimalarial candidates from African plants: An in vitro approach using Plasmodium falciparum. J. Ethnopharmacol. 1986, 15, 201–209. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1-9 are available from the authors. |
Compound (200 μM) | Chemosuppression of P. berghei schizont cultures (%) | IC50 (μM) |
---|---|---|
Ile-Lys-Phe-Orn (1) | 83.97 | 32.35 |
Val-Lys-Phe-Orn (2) | 85.85 | 10.00 |
Lys-Orn-Phe-Orn (3) | 71.60 | 13.48 |
Phe-Orn-Phe-Orn (4) | 85.94 | 3.31 |
Lys-Phe-Phe-Orn (5) | 75.82 | 2.57 |
Orn-Phe-Lys-Val (6) | 26.58 | >200 |
Lys-Val-Pro-Orn (7) | 27.39 | >200 |
Lys-Val-Phe-Pro (8) | 72.78 | 51.28 |
Phe-Orn-Val (9) | 55.95 | 120.22 |
Chloroquine | 100 | 0.06 |
© 2009 by the authors licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pérez-Picaso, L.; Velasco-Bejarano, B.; Aguilar-Guadarrama, A.B.; Argotte-Ramos, R.; Rios, M.Y. Antimalarial Activity of Ultra-Short Peptides. Molecules 2009, 14, 5103-5114. https://doi.org/10.3390/molecules14125103
Pérez-Picaso L, Velasco-Bejarano B, Aguilar-Guadarrama AB, Argotte-Ramos R, Rios MY. Antimalarial Activity of Ultra-Short Peptides. Molecules. 2009; 14(12):5103-5114. https://doi.org/10.3390/molecules14125103
Chicago/Turabian StylePérez-Picaso, Lemuel, Benjamín Velasco-Bejarano, A. Berenice Aguilar-Guadarrama, Rocío Argotte-Ramos, and María Yolanda Rios. 2009. "Antimalarial Activity of Ultra-Short Peptides" Molecules 14, no. 12: 5103-5114. https://doi.org/10.3390/molecules14125103
APA StylePérez-Picaso, L., Velasco-Bejarano, B., Aguilar-Guadarrama, A. B., Argotte-Ramos, R., & Rios, M. Y. (2009). Antimalarial Activity of Ultra-Short Peptides. Molecules, 14(12), 5103-5114. https://doi.org/10.3390/molecules14125103