New Synthesis and Antiparasitic Activity of Model 5-Aryl-1-methyl-4-nitroimidazoles
Abstract
:Introduction
Results and Discussion
Chemistry
Antiamoebic and antigiardial activity
Mean IC50 ± SD(n) (μM) | ||||
---|---|---|---|---|
Compound | Giardia intestinalis | Entamoeba histolytica | Hep-2 cells | Vero cells |
5a | 4.43 ± 1.97 | 4.04 ± 0.28 | 1040.27 ± 19.18 | 1748.28 ± 18.38 |
5b | 4.01 ± 0.75 | 3.10 ± 0.41 | 1610.74 ± 22.23 | 1633.32 ± 13.61 |
5c | 1.72 ± 0.57 | 1.16 ± 0.19 | 568.80 ± 22.71 | 868.24 ± 22.02 |
5d | 3.76 ± 0.2 | 4.39 ± 0.71 | 1894.12 ± 21.13 | 1918.41 ± 13.37 |
5e | 1.90 ± 0.14 | 1.56 ± 0.156 | 437.19 ± 16.39 | 725.05 ± 11.79 |
5f | 1.47 ± 0.14 | 1.89 ± 0.14 | 1780.21 ± 15.71 | 1783.16 ± 19.66 |
Metronidazole | 4.39 ± 0.59 | 4.10 ± 0.78 | 2044.20 ± 26.36 | 2071.35 ± 16.37 |
IC50 Ratio | ||||
---|---|---|---|---|
(metronidazole/compound) | ||||
Compound | Giardia intestinalis | Entamoeba histolytica | Hep-2 cells | Vero cells |
5a | 1 | 1 | 2 | 1.2 |
5b | 1.1 | 1.3 | 1.3 | 1.3 |
5c | 3.5 | 2.6 | 3.6 | 2.4 |
5d | 1.2 | 0.93 | 1.1 | 1.1 |
5e | 2.6 | 2.3 | 4.7 | 2.9 |
5f | 2.2 | 2.9 | 1.2 | 1.2 |
Experimental
General
General procedure for the synthesis of 5-aryl-1-methyl-4-nitroimidazoles 5a-f
Biological Activity
Test organisms
Antiamoebic and antigiardial activity
Cytotoxicity assay
Conclusions
Acknowledgements
- Samples Availability: Samples of compounds 5a-f are available from the authors.
References and Notes
- Boiani, M.; Gonzalez, M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini-Rev. Med. Chem. 2005, 5, 409–424. [Google Scholar] [CrossRef]
- De Luca, L. Naturally occurring and synthetic imidazoles: Their chemistry and their biological activities. Curr. Med. Chem. 2006, 13, 1–23. [Google Scholar]
- Du, H.; He, Y.; Rasapalli, S.; Lovely, C.J. Newmethods of imidazole functionalization from imidazole to marine alkaloids. Synlett 2006, 7, 965–992. [Google Scholar]
- Grimmett, M.R. Imidazoles and their benzo derivatives. In Comprehesive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Potts, K.T., Eds.; Pergamon Press: Oxford, UK, 1984; Vol. 5 (Part 4A), pp. 345–497. [Google Scholar]
- Ganellin, C.R. Discovery of the antiulcer drug Tagamet. Drug Discov. Dev. 2006, 1, 295–311. [Google Scholar] [CrossRef]
- Silverman, R.A. The Organic Chemistry of Drug Design and Drug Action; Elsevier Academic Press: Amsterdam, The Netherlands, 2004; p. 159. [Google Scholar]
- Yokoyama, M.; Aono, H.; Takeda, A.; Morita, K. Cimetidine for chronic calcifying tendinitis of the shoulder. Reg. Anesth. Pain Med. 2003, 28, 248–252. [Google Scholar]
- Matsuo, Y. Pharmacology of cimetidine. Kansen Ensho Men'eki 1983, 13, 217–228. [Google Scholar]
- Muller, C.E. Basic chemistry of 2-nitroimidazoles (azomycin derivatives). Dev. Nucl. Med. 1999, 33, 47–59. [Google Scholar]
- Hori, H.; Jin, C.Z.; Kiyono, M.; Kasai, S.; Shimamura, M.; Inayama, S. Design, synthesis, and biological activity of anti-angiogenic hypoxic cell radiosensitizer haloacetylcarbamoyl-2-nitroimidazoles. Bioorg. Med. Chem. 1997, 5, 591–599. [Google Scholar] [CrossRef]
- Lawton, C.A.; Coleman, C.N.; Buzydlowski, J.W.; Forman, J.D.; Marcial, V.A.; DelRowe, J.D.; Rotman, M. Results of a phase II trial of external beam radiation with etanidazole (SR 2508) for the treatment of locally advanced prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 673–680. [Google Scholar] [CrossRef]
- Maurin, M.B.; Rowe, S.M.; Field, K.S.; Swintosky, R.C.; Hussain, M.A. Solubility behavior, phase transition, and structure-based nucleation inhibition of etanidazole in aqueous solutions. Pharm. Res. 1996, 13, 1401–1405. [Google Scholar] [CrossRef]
- Bendesky, A.; Menendez, D. Metronidazole: A comprehensive review. Rev. Fac. Med. U.N.A.M. 2001, 44, 255–259. [Google Scholar]
- Freeman, C.D.; Klutman, N.E.; Lamp, K.C. Metronidazole: A therapeutic review and update. Drugs 1997, 54, 679–708. [Google Scholar] [CrossRef]
- Goldman, P.; Wuest, J.D. Reactions of nitroimidazoles. Nucleophilic substitution of the nitro group. J. Am. Chem. Soc. 1981, 103, 6224–6226. [Google Scholar] [CrossRef]
- Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Metronidazole in anaerobic infections: A review of its activity, pharmacokinetics and therapeutic use. Drugs 1978, 16, 387–417. [Google Scholar] [CrossRef]
- Mukherjee, A.; Kumar, S.; Seth, M.; Bhaduri, A.P. Synthesis of 1-methyl-4-nitro-5- substituted imidazole and substituted imidazolothiazole derivatives as possible antiparasitic agents. Indian J. Chem. Section B: Org. Chem. Incl. Med. Chem. 1989, 28B, 391–396. [Google Scholar]
- Thomas, A.H. Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. J. Antimicrob. Chemother. 1986, 17, 269–279. [Google Scholar] [CrossRef]
- Egolf, R.A.; Heindel, N.D. The synthesis of aryl 4-nitro-5-imidazolyl sulfone radiation sensitizers sterically protected against glutathione reaction. J. Heterocycl. Chem. 1991, 28, 577–582. [Google Scholar] [CrossRef]
- Shafiee, A.; Shahocini, S. Nitroimidazoles. V. Synthesis of 1-methyl-2-(2-methyl-4-thiazolyl)-nitroimidazoles. J. Heterocycl. Chem. 1989, 26, 1627–1629. [Google Scholar]
- Boechat, N.; Carvalho, A.S.; Fernandes-Ferreira, E.; Soares, R.O.A.; Souza, A.S.; Gibaldi, D.; Bozza, M.; Pinto, A.C. Novel nitroimidazoles with trypanocidal and cell growth inhibition activities. Cytobios 2001, 105, 83–90. [Google Scholar]
- Carvalho, A.S.; Gibaldi, D.; Pinto, A.C.; Bozza, M.; Boechat, N. Synthesis and trypanocidal evaluation of news 5-[N-(3-(5-substituted)-1,3,4-thiadiazolyl)]amino-1- methyl-4-nitroimidazoles. Lett. Drug Design Discov. 2006, 3, 98–101. [Google Scholar] [CrossRef]
- Ehlhardt, W.J.; Beaulieu, B.B.; Goldman, P. Nitrosoimidazoles: Highly bactericidal analogs of 5-nitroimidazole drugs. J. Med. Chem. 1988, 31, 323-329, and references cited therein. [Google Scholar] [CrossRef]
- Fitzmaurice, C.; Lord, G.H. Substituted imidazoles. Brit. Pat. GB 1 046 248, 1966. [Chem. Abstr. 1967, 66, 37927]. [Google Scholar]
- Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef]
- Stanforth, S.P. Catalytic cross-coupling reactions in biaryl synthesis. Tetrahedron 1998, 54, 263–303. [Google Scholar] [CrossRef]
- Chemeler, S.R.; Trauner, D.; Danishefsky, S.J. The B-alkyl Suzuki-Miyaura cross- coupling reaction: Development, mechanistic study, and applications in natural product synthesis. Angew. Chem. Int. Ed. Engl. 2001, 40, 4544–4568. [Google Scholar] [CrossRef]
- Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1470. [Google Scholar] [CrossRef]
- Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 2002, 58, 9633–9695. [Google Scholar] [CrossRef]
- Zapf, A. Coupling of aryl and alkyl halides with organoboron reagents (Suzuki Reaction). In Transition Metals for Organic Synthesis, 2nd; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp. 211–229. [Google Scholar]
- Shortly after completion of the present work, a synthesis of 4,5-diaryl-1-methylimidazoles by Pd-catalyzed direct coupling reaction has been reported: Bellina, F.; Cauteruccio, S.; Di Fiore, A.; Rossi, R. Regioselective synthesis of 4,5-diaryl-1-methyl-1H-imidazoles including highly cytotoxic derivatives by Pd-catalyzed direct C-5 arylation of 1-methyl-1H-imidazole with aryl bromides. Eur. J. Org. Chem. 2008, 32, 5436–5445.
- Reetz, M.T.; Westermann, E. Phosphane-free palladium-catalyzed coupling reactions: The decisive role of Pd nanoparticles. Angew. Chem. Int. Ed. Engl. 2000, 39, 165–168. [Google Scholar] [CrossRef]
- Knight, R. The chemotherapy of amebiasis. J.Antimicrob. Chemother. 1980, 6, 577–593. [Google Scholar] [CrossRef]
- Majewska, A.C.; Kasprzak, W.; De Jonckheere, J.F.; Kaczmarek, E. Heterogeneity in the sensitivity of stocks and clones of Giardia to metronidazole and ornidazole. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 67–69. [Google Scholar] [CrossRef]
- Clark, C.G.; Diamond, L.S. Methods for cultivation of luminal parasitic protists of clinical importance. Clin. Microbiol. Rev. 2002, 15, 329–341. [Google Scholar] [CrossRef]
- Saadeh, H.A.; Mosleh, I.M.; Mubarak, M.S. Synthesis of novel hybrid molecules from precursors with known antiparasitic activity. Molecules 2009, 14, 1483–1494. [Google Scholar] [CrossRef]
- Aley, S.B.; Zimmerman, M.; Hetsko, M.; Selsted, M.E.; Gillin, F.D. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun. 1994, 62, 5397–5403. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Saadeh, H.A.; Mosleh, I.M.; El-Abadelah, M.M. New Synthesis and Antiparasitic Activity of Model 5-Aryl-1-methyl-4-nitroimidazoles. Molecules 2009, 14, 2758-2767. https://doi.org/10.3390/molecules14082758
Saadeh HA, Mosleh IM, El-Abadelah MM. New Synthesis and Antiparasitic Activity of Model 5-Aryl-1-methyl-4-nitroimidazoles. Molecules. 2009; 14(8):2758-2767. https://doi.org/10.3390/molecules14082758
Chicago/Turabian StyleSaadeh, Haythem A., Ibrahim M. Mosleh, and Mustafa M. El-Abadelah. 2009. "New Synthesis and Antiparasitic Activity of Model 5-Aryl-1-methyl-4-nitroimidazoles" Molecules 14, no. 8: 2758-2767. https://doi.org/10.3390/molecules14082758
APA StyleSaadeh, H. A., Mosleh, I. M., & El-Abadelah, M. M. (2009). New Synthesis and Antiparasitic Activity of Model 5-Aryl-1-methyl-4-nitroimidazoles. Molecules, 14(8), 2758-2767. https://doi.org/10.3390/molecules14082758