Hypoglycemic and Hypolipidemic Effects of Polyphenols from Burs of Castanea mollissima Blume
Abstract
:1. Introduction
2. Results and Discussion
2.1. Induction of Diabetic Models
2.2. Effects on Fast Blood Glucose Levels of Normal and Diabetic Rats
2.3. Effects on Body Weight of Normal and Diabetic Rats
2.4. Effects on Lipid Profile of Normal and Diabetic Rats
Groups | Dose | Mean body weight ± SEM (g) | |||||
---|---|---|---|---|---|---|---|
mg/kg | 1st day | 3rd day | 6th day | 9th day | 12th day | ||
Diabetes control | – | 232.90 ± 17.84 | 238.78 ± 18.52 # | 237.73 ± 17.38 ## | 239.20 ± 20.03 ## | 236.80 ± 18.44 ## | |
Diabetes + Tolbutamide | 100 | 244.66 ± 10.96 | 243.58 ± 11.50 | 239.52 ± 10.03 | 242.30 ± 8.15 | 237.76 ± 12.49 | |
Diabetes + CMPE | 150 | 244.05 ± 10.13 | 237.42 ± 7.18 | 231.05 ± 9.52 | 228.98 ± 10.84 * | 222.98 ± 7.13 * | |
Diabetes + CMPE | 300 | 240.07 ± 5.91 | 237.85 ± 9.01 | 224.40 ± 17.43 * | 221.70 ± 19.05 * | 218.50 ± 8.05 ** | |
Normal control | – | 236.32 ± 8.99 | 254.20 ± 10.10 | 270.17 ± 8.45 | 281.97 ± 8.38 | 300.17 ± 7.22 | |
Normal + CMPE | 150 | 238.55 ± 3.94 | 251.32 ± 4.59 | 269.83 ± 8.18 | 274.85 ± 5.64 | 283.50 ± 11.45 | |
Normal + CMPE | 300 | 232.72 ± 8.99 | 237.57 ± 10.10 # | 244.83 ± 8.45 # | 252.33 ± 8.38 ## | 270.00 ± 7.22 ## |
Dose (mg/kg) | Triglyceride (mg/dL) | Cholesterol (mg/dL) | HDL-cholesterol (mg/dL) | LDL-cholesterol (mg/dL) | |
---|---|---|---|---|---|
Diabetes control | – | 77.97 ± 7.97 ## | 65.79 ± 8.90 ## | 23.52 ± 4.26 # | 38.64 ± 4.64 ## |
Diabetes + Tolbutamide | 100 | 75.00 ± 9.74 | 57.41 ± 3.48 * | 24.76 ± 2.32 | 36.46 ± 2.71 |
Diabetes + CMPE | 150 | 54.87 ± 10.62 * | 52.63 ± 9.68 * | 27.09 ± 5.81 * | 34.0 6± 4.64 * |
Diabetes + CMPE | 300 | 45.14 ± 9.74 ** | 51.47 ± 8.51 * | 24.46 ± 6.97 | 24.11 ± 4.64 ** |
Normal control | – | 58.41 ± 6.20 | 50.70 ± 4.64 | 28.64 ± 4.26 | 28.25 ± 5.81 |
Normal + CMPE | 150 | 63.72 ± 9.74 | 47.60 ± 4.26 | 26.32 ± 2.32 | 28.25 ± 1.94 |
Normal + CMPE | 300 | 60.18 ± 6.20 | 46.83 ± 4.64 | 29.03 ± 2.71 | 28.64 ± 4.26 |
2.5. Effects on Malondialdehyde (MDA) Levels in Tissues of Normal and Diabetic Rats
Dose (mg/kg) | Liver (mg/g prot) | Kidney (mg/g prot) | Heart (mg/g prot) | Spleen (mg/g prot) | |
---|---|---|---|---|---|
Diabetes control | – | 24.68 ± 2.11 ## | 40.61 ± 5.81 ## | 37.55 ± 5.58 ## | 32.65 ± 3.14 ## |
Diabetes + tolbutamide | 100 | 20.80 ± 2.93 * | 46.78 ± 3.34 | 36.62 ± 4.13 | 20.53 ± 4.02 ** |
Diabetes + CMPE | 150 | 22.62 ± 2.53 | 46.46 ± 5.31 | 32.38 ± 6.41 | 24.10 ± 5.15 ** |
Diabetes + CMPE | 300 | 22.01 ± 0.08 * | 43.74 ± 6.95 | 33.83 ± 3.67 | 23.60 ± 4.31 ** |
Normal control | – | 17.46 ± 1.6 | 15.11 ± 1.90 | 20.29 ± 1.72 | 26.87 ± 6.15 |
Normal + CMPE | 150 | 17.94 ± 2.02 | 16.63 ± 2.42 | 20.42 ± 1.59 | 24.62 ± 4.43 |
Normal + CMPE | 300 | 17.30 ± 1.69 | 16.11 ± 2.18 | 22.03 ± 2.67 | 25.27 ± 6.36 |
2.6. Effects on Glutathione (GSH) Levels in Tissues of Normal and Diabetic Rats
Dose (mg/kg) | Liver (mg/g prot) | Kidney (mg/g prot) | Heart (mg/g prot) | Spleen (mg/g prot) | |
---|---|---|---|---|---|
Diabetes control | – | 114.6 ± 4.0 ## | 93.6 ± 5.8 # | 114.8 ± 21.1 ## | 102.6 ± 4.2 # |
Diabetes + tolbutamide | 100 | 119.8 ± 13.6 | 69.7 ± 6.6 ** | 137.8 ± 23.6 | 90.8 ± 4.2 ** |
Diabetes + CMPE | 150 | 116.2 ± 16.8 * | 77.1 ± 5.8 ** | 111.6 ± 17.0 * | 67.0 ± 6.0 ** |
Diabetes + CMPE | 300 | 102.1 ± 6.3 ** | 80.2 ± 6.8 ** | 96.1 ± 8.0 ** | 64.7 ± 8.4 ** |
Normal control | – | 68.4 ± 4.4 | 81.0 ± 4.1 | 67.6 ± 4.1 | 84.3 ± 15.4 |
Normal + CMPE | 150 | 64.4 ± 5.0 | 86.2 ± 11.1 | 74.8 ± 12.3 | 79.8 ± 7.1 |
Normal + CMPE | 300 | 59.0 ± 1.2 ## | 85.9 ± 5.4 | 63.8 ± 6.3 | 86.2 ± 6.7 |
3. Experimental
3.1. Plant Samples, Animals and Reagents
3.2. Preparation of Phenolic Extracts of C. mollissima (CMPE) Spiny Burs
3.3. Determination of the Blood Glucose Levels
3.4. Induction of Diabetic Rats
3.5. Effects of CMPE on Diabetic and Normal Rats
3.6. Measurement of MDA Concentration in Liver, Kidney, Spleen and Heart Tissues
3.7. Non-Protein Sulphydryl Groups in Liver, Kidney, Spleen and Heart Tissues
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
References and Notes
- Bowling, A.C.; Beal, M.F. Bioenergetic and oxidative stress in neurodegenerative disease. Life Sci. 1995, 56, 1151–1171. [Google Scholar] [CrossRef]
- Vinik, A.I.; Vinik, E. Prevention of the complications of diabetes. Am. J. Manag. Care 2003, 9, S63–S80. [Google Scholar]
- Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414, 821–827. [Google Scholar] [CrossRef]
- Wolfe, S.P.; Jiang, Z.Y.; Hunt, J.V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 1991, 10, 339–352. [Google Scholar] [CrossRef]
- Velázquez, E.; Winocour, P.H.; Kesteven, P.; Alberti, K.G.; Laker, M.F. Relation of lipid peroxides to macrovascular disease in type 2 diabetes. Diabet. Med. 1991, 8, 752–758. [Google Scholar] [CrossRef]
- Aslan, M.; Orhan, N.; Orhan, D.D.; Erun, F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditional used in Turkey for diabetes. J. Ethnopharmacol. 2010, 128, 384–389. [Google Scholar] [CrossRef]
- Vázquez, G.; González-Álvarez, J.; Freire, M.S.; Fernández-Agulló, A.; Santos, J.; Antorrena, G. Chestnut burs as a source of natural antioxidants. Chem. Eng. Trans. 2009, 17, 855–860. [Google Scholar]
- Vázquez, G.; Fernández-Agulló, A.; Gómez-Castro, C.; Freire, M.S.; Antorrena, G.; González-Álvarez, J. Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Ind. Crop. Prod. 2012, 35, 126–134. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.Y.; Chen, S.Y.; Shi, L.L.; Liu, Y.J.; Ma, C. Antioxidant potential of polyphenols and tannins from burs of Castanea mollissima Blume. Molecules 2011, 16, 8590–8600. [Google Scholar] [CrossRef]
- Mujić, A.; Grdović, N.; Mujić, I.; Mihailović, M.; Živković, J.; Poznanović, G.; Vidaković, M. Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem. 2011, 125, 841–849. [Google Scholar]
- Koji, H.; Rhyoji, K.; Mikio, I. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol. Pharm. Bull. 2006, 29, 1110–1119. [Google Scholar] [CrossRef]
- Roghani, M.; Baluchnejadmojarad, T. Hypoglycemic and hypolipidemic effects and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology 2010, 17, 55–59. [Google Scholar] [CrossRef]
- Arora, S.; Ojha, S.K.; Vohora, D. Characterisation of streptozotocin induced diabetes mellitus in swiss albino mice. Global J. Pharmacol. 2009, 3, 81–84. [Google Scholar]
- Ismail, Z.B.; Alzaben, K.R.; Abu-Halaweh, S.A.; Al-Essa, M.K.; Abuabeeleh, J.; Alsmady, M.M.; Abeeleh, M.A. Induction of diabetes mellitus in rats using intraperitoneal streptozotocin: A comparison between 2 strains of rats. Eur. J. Sci. Res. 2009, 32, 398–402. [Google Scholar]
- Ratzmann, K.P.; Schulz, B.; Heinke, P.; Besch, W. Tolbutamide does not alter insulin requirement in type 1 (insulin-dependent) diabetes. Diabetologia 1984, 27, 8–12. [Google Scholar]
- Rossini, A.A.; Like, A.A.; Chick, W.L.; Appel, M.C.; Cahill, G.F. Studies of streptozotocin-induced insulitis and diabetes. Proc. Natl. Acad. Sci. USA 1977, 74, 2485–2489. [Google Scholar] [CrossRef]
- Kazuya, I.; Yasushi, A.; Yuichiro, Y.; Shimpei, F.; Yutaka, S.; Haruki, O.; Koshiro, H.; Susumu, I. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation 2002, 73, 512–518. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar]
- Schofield, P.; Mbugua, D.M.; Pell, A.N. Analysis of condensed tannins: A review. Anim. Feed Sci. Technol. 2001, 91, 21–40. [Google Scholar] [CrossRef]
- Krentz, A.J. Lipoprotein abnormalities and their consequences for patients with type 2 diabetes. Diabetes Obes. Metab. 2003, 5 (Suppl. 1), S19–S27. [Google Scholar] [CrossRef]
- Brown, B.G.; Zhao, X.Q.; Sacco, D.E.; Albers, J.J. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993, 87, 1781–1791. [Google Scholar] [CrossRef]
- Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999, 48, 1–9. [Google Scholar] [CrossRef]
- Levy, Y.; Zaltzberg, H.; Ben-Amotz, A.; Kanter, Y.; Aviram, M. β-carotene affects antioxidant status in noninsulin-dependent diabetes mellitus. Pathophysiology 1999, 6, 157–161. [Google Scholar] [CrossRef]
- Kamei, J.; Saitoh, A. Role of spleen or spleen products in the reduced locomotor-enhancing effect of morphine in diabetic mice. Neurosci. Lett. 1996, 210, 57–60. [Google Scholar] [CrossRef]
- Yagi, H.; Matsumoto, M.; Suzuki, S.; Misaki, R.; Suzuki, R.; Makino, S.; Harada, M. Possible mechanism of the preventive effect of BCG against diabetes mellitus in NOD mouse: I. Generation of suppressor macrophages in spleen cells of BCG-vaccinated mice. Cell. Immunol. 1991, 138, 130–141. [Google Scholar] [CrossRef]
- Saito-Yamanaka, N.; Yamanaka, H.; Nagasawa, S. Glutathione-related detoxication functions in streptozotocin-induced diabetic rats. J. Vet. Med. Sci. 1993, 55, 991–994. [Google Scholar] [CrossRef]
- Orhan, D.D.; Aslan, M.; Sendogdu, N.; Ergun, F.; Yesilada, E. Evaluation of the hypoglycemic effect and antioxidant activity of three Viscum album subspecies (European mistletoe) in streptozotocin-diabetic rats. J. Ethnopharmacol. 2005, 98, 95–102. [Google Scholar] [CrossRef]
- Ravi, K.; Ramachandran, B.; Subramanian, S. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 2004, 27, 1212–1217. [Google Scholar] [CrossRef]
- Sample Availability: Samples are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yin, P.; Zhao, S.; Chen, S.; Liu, J.; Shi, L.; Wang, X.; Liu, Y.; Ma, C. Hypoglycemic and Hypolipidemic Effects of Polyphenols from Burs of Castanea mollissima Blume. Molecules 2011, 16, 9764-9774. https://doi.org/10.3390/molecules16119764
Yin P, Zhao S, Chen S, Liu J, Shi L, Wang X, Liu Y, Ma C. Hypoglycemic and Hypolipidemic Effects of Polyphenols from Burs of Castanea mollissima Blume. Molecules. 2011; 16(11):9764-9774. https://doi.org/10.3390/molecules16119764
Chicago/Turabian StyleYin, Peipei, Shan Zhao, Siyu Chen, Jieyuan Liu, Lingling Shi, Xinjie Wang, Yujun Liu, and Chao Ma. 2011. "Hypoglycemic and Hypolipidemic Effects of Polyphenols from Burs of Castanea mollissima Blume" Molecules 16, no. 11: 9764-9774. https://doi.org/10.3390/molecules16119764
APA StyleYin, P., Zhao, S., Chen, S., Liu, J., Shi, L., Wang, X., Liu, Y., & Ma, C. (2011). Hypoglycemic and Hypolipidemic Effects of Polyphenols from Burs of Castanea mollissima Blume. Molecules, 16(11), 9764-9774. https://doi.org/10.3390/molecules16119764