Antioxidant, Total Phenolic Content and Cytotoxicity Evaluation of Selected Malaysian Plants
Abstract
:1. Introduction
2. Results and Discussions
2.1. Evaluation of DPPH Scavenging Activities
2.2. Ferric Reducing Antioxidant Power Assay (FRAP)
2.3. Total Phenolic Content (TPC)
2.4. Cytotoxicity
3. Experimental
3.1. Plant Collections and Extractions
3.2. Preparation of Aqueous Extract
3.3. Preparation of Ethanol Extract
3.4. DPPH Radical Scavenging Activity Assay
3.5. Ferric Reducing Antioxidant Power Assay (FRAP)
3.6. Total Phenolic Content (TPC)
3.7. Cytotoxicity Assay
3.8. Statistical Analysis
4. Conclusion
Acknowledgements
References
- Bagchi, D.; Bagchi, M.; Stohs, S.; Das, D.; Ray, S.; Kuszynski, C.; Joshi, S.; Pruess, H. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 2000, 148, 187–197. [Google Scholar] [CrossRef]
- Jaitak, V.; Sharma, K.; Kalia, K.; Kumar, N.; HP, S.; Kaul, V.; Singh, B. Antioxidant activity of Potentilla fulgens: An alpine plant of western Himalaya. J. Food Compost. Anal. 2010, 23, 142–147. [Google Scholar] [CrossRef]
- Orech, F.; Akenga, T.; Ochora, J.; Friis, H.; Aagaard-Hansen, J. Potential toxicity of some traditional leafy vegetables consumed in Nyang’oma division, Western Kenya. AJFAND. 2005, 5. Number 1. [Google Scholar]
- Urones, J.G.; Marcos, I.S.; Pérez, B.G.; Barcala, P.B. Flavonoids from Polygonum minus. Phytochemistry. 1990, 29, 3687–3689. [Google Scholar] [CrossRef]
- Mackeen, M.; Ali, A.; El-Sharkawy, S.; Manap, M.; Salleh, K.; Lajis, N.; Kawazu, K. Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables (Ulam). Pharm. Biol. 1997, 35, 174–178. [Google Scholar] [CrossRef]
- Jarukamjorn, K.; Nemoto, N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J. Health Sci. 2008, 54, 370–381. [Google Scholar] [CrossRef]
- Singha, P.; Roy, S.; Dey, S. Antimicrobial activity of Andrographis paniculata. Fitoterapia 2003, 74, 692–694. [Google Scholar] [CrossRef]
- Wiart, C.; Kumar, K.; Yusof, M.; Hamimah, H.; Fauzi, Z.; Sulaiman, M. Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytother. Res. 2005, 19, 1069–1070. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, N.; Rawal, U. Hepatoprotective and antioxidant property of Andrographis paniculata (Nees) in BHC induced liver damage in mice. Indian J. Exp. Biol. 2001, 39, 41. [Google Scholar] [PubMed]
- Reyes, B.; Bautista, N.; Tanquilut, N.; Anunciado, R.; Leung, A.; Sanchez, G.; Magtoto, R.; Castronuevo, P.; Tsukamura, H.; Maeda, K. Anti-diabetic potentials of Momordica charantia and Andrographis paniculata and their effects on estrous cyclicity of alloxan-induced diabetic rats. J. Ethnopharmacol. 2006, 105, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Husen, R.; Pihie, A.; Nallappan, M. Screening for antihyperglycaemic activity in several local herbs of Malaysia. J. Ethnopharmacol. 2004, 95, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Sheeja, K.; Guruvayoorappan, C.; Kuttan, G. Antiangiogenic activity of Andrographis paniculata extract and andrographolide. Int. Immunopharmacol. 2007, 7, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Ji, L. In vivo and in vitro anti-inflammatory activities of neoandrographolide. Am. J. Chin. Med. 2007, 35, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Coon, J.; Ernst, E. Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy. Planta Med. 2004, 70, 293–298. [Google Scholar] [PubMed]
- Hwang, J.; Shim, J.; Pyun, Y. Antibacterial activity of xanthorrhizol from Curcuma xanthorrhiza against oral pathogens. Fitoterapia 2000, 71, 321–323. [Google Scholar] [CrossRef]
- Choi, M.; Kim, S.; Chung, W.; Hwang, J.; Park, K. Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza, has an anti-metastatic potential in experimental mouse lung metastasis model. Biochem. Biophys. Res. Commun. 2004, 326, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lou, Y.; Xie, J.; Ma, W.; Lu, Y.; Yen, P.; Zhu, B.; Newmark, H.; Ho, C. Effect of dietary curcumin and dibenzoylmethane on formation of 7, 12-dimethylbenz [a] anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis 1998, 19, 1697–1700. [Google Scholar] [CrossRef] [PubMed]
- Fadzelly, A.; Asmah, R.; Fauziah, O. Effects of Strobilanthes crispus tea aqueous extracts on glucose and lipid profile in normal and streptozotocin-induced hyperglycemic rats. Plant Foods Hum. Nutr. 2006, 61, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Norfarizan-Hanoon, N.; Asmah, R.; Rokiah, M.; Fauziah, O.; Faridah, H. Antihyperglycemic, hypolipidemic and antioxidant enzymes effect of Strobilanthes crispus juice in normal and streptozotocin-induced diabetic male and female rats. Int. J. Pharmacol. 2009, 5, 200–207. [Google Scholar] [CrossRef]
- Liza, M.; Abdul Rahman, R.; Mandana, B.; Jinap, S.; Rahmat, A.; Zaidul, I.; Hamid, A. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food Bioprod. Process. 2010, 88, 319–326. [Google Scholar] [CrossRef]
- Iqbal, M.; Shah, M.D.; Lie, C.A.; San, C.K. Strobilanthes crispus attenuates renal carcinogen, iron nitrilotriacetate (Fe-NTA)-mediated oxidative damage of lipids and DNA. Mol. Cell Biochem. 2010, 341, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Yesilada, E.; Gurbuz, I.; Shibata, H. Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity. J. Ethnopharmacol. 1999, 66, 289–293. [Google Scholar] [CrossRef]
- Kohler, I.; Jenett-Siems, K.; Siems, K.; Hernandez, M.A.; Ibarra, R.A.; Berendsohn, W.G.; Bienzle, U.; Eich, E. In vitro antiplasmodial investigation of medicinal plants from El Salvador. Zeitschrift für Naturforschung. C. A J. Biosci. 2002, 57, 277–281. [Google Scholar] [CrossRef]
- Alam, S.; Asad, M.; Asdaq, S.; Prasad, V. Antiulcer activity of methanolic extract of Momordica charantia L. in rats. J. Ethnopharmacol. 2009, 123, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Choudhary, B.; Bandyopadhyay, N. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol. 2003, 84, 105–108. [Google Scholar] [CrossRef]
- Ahmed, I.; Lakhani, M.; Gillett, M.; John, A.; Raza, H. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 2001, 51, 155–161. [Google Scholar] [CrossRef]
- Othman, A.; Ismail, A.; Abdul Ghani, N.; Adenan, I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 2007, 100, 1523–1530. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Capocasa, F.; Scalzo, J.; Murri, G.; Battino, M.; Mezzetti, B. The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. ‘Suncrest’). Sci. hortic. 2005, 107, 36–42. [Google Scholar] [CrossRef]
- Gorinstein, S.; Vargas, O.; Jaramillo, N.; Salas, I.; Ayala, A.; Arancibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S. The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur. Food Res. Technol. 2007, 225, 321–328. [Google Scholar] [CrossRef]
- Faujan, N.; Abdullah, N.; Sani, A.; Babji, A. Antioxidative activities of water extracts of some Malaysian herbs. ASEAN Food J. 2007, 14, 61–68. [Google Scholar]
- Jonfia-Essien, W.; West, G.; Alderson, P.; Tucker, G. Phenolic content and antioxidant capacity of hybrid variety cocoa beans. Food Chem. 2008, 108, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Phomkaivon, N.; Areekul, V. Screening for antioxidant activity in selected Thai wild plants. Asian J. Food Agro-Industry 2009, 2, 433–440. [Google Scholar]
- Loo, A.; Jain, K.; Darah, I. Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chem. 2007, 104, 300–307. [Google Scholar] [CrossRef]
- Ling, L.T.; Radhakrishnan, A.K.; Subramaniam, T.; Cheng, H.M.; Palanisamy, U.D. Assessment of Antioxidant Capacity and Cytotoxicity of Selected Malaysian Plants. Molecules 2010, 15, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Moure, A.; Cruz, J.; Franco, D.; Domínguez, J.; Sineiro, J.; Domínguez, H.; José Núñez, M.; Parajó, J. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Ali, A.M.; Mackeen, M.M.; El-Sharkawy, H.; Hamid, A.; Ismail, N.H.; Ahmad, F.; Lajis, N. Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J. Trop. Agric. Sci. 1996, 19, 129–136. [Google Scholar]
- Jada, S.; Subur, G.; Matthews, C.; Hamzah, A.; Lajis, N.; Saad, M.; Stevens, M.; Stanslas, J. Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry 2007, 68, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, Y.; Liu, Z.; Shen, F.; Bian, X.; Meng, Y. Anti-tumor activity and immunological modification of ribosome-inactivating protein (RIP) from Momordica charantia by covalent attachment of polyethylene glycol. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 2009, 41, 792–800. [Google Scholar] [CrossRef]
- Yaacob, N.S.; Hamzah, N.; Kamal, N.M.; Nursyazni, N.; Abidin, Z.; Amalina, S.; Lai, C.S.; Navaratnam, V.; Norazmi, M.N. Anticancer activity of a sub-fraction of dichloromethane extract of Strobilanthes crispus on human breast and prostate cancer cells in vitro. BMC Complement Altern. Med. 2010, 10, 1472–6882. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Abdulla, M.; Noor, S.; Ismail, S.; Ali, H. Gastroprotective Effects of Melastoma malabathricum Aqueous Leaf Extract against Ethanol-Induced Gastric Ulcer Iin Rats. Am. J. Biochem. Biotechnol. 2008, 4, 438–441. [Google Scholar] [CrossRef]
- Mahmood, A.; Mariod, A.A.; Al-Bayaty, F.; Abdel-Wahab, S.I. Anti-ulcerogenic activity of Gynura procumbens leaf extract against experimentally-induced gastric lesions in rats. J. Med. Plant. Res. 2010, 4, 685–691. [Google Scholar]
- Gorinstein, S.; Martin-Belloso, O.; Katrich, E.; Lojek, A. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. J. Nutr. Biochem. 2003, 14, 154–159. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Miliauskas, G.; Venskutonis, P.; van Beek, T. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Lestari, F.; Hayes, A.; Green, A.; Markovic, B. In vitro cytotoxicity of selected chemicals commonly produced during fire combustion using human cell lines. Toxicol. In Vitro. 2005, 19, 653–663. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: contact the authors |
Plants | Extract | DPPH % | FRAP (mmol/g) | TPC (mg/g) |
---|---|---|---|---|
P. minus | aqueous | 81.88 ± 0.98 | 849.33 ± 0.32 | 55.5 ± 0.0021 |
ethanol | 89.5 ± 1.07 | 11220 ± 0.1 | 207 ± 0.011 | |
C. xanthorrhiza | aqueous | 62.3 ± 1.76 | 358.3 ± 0.06 | 24.3 ± 0.005 |
ethanol | 64.0 ± 1.64 | 2955 ± 0.04 | 88.0 ± 0.002 | |
A. paniculata | aqueous | 69.7± 6.87 | 343.33 ± 0.05 | 23.33 ± 0.001 |
ethanol | 58.1 ± 12.70 | 1182 ± 0.01 | 19.0 ± 0.001 | |
S. crispus | aqueous | 28.5± 14.53 | 150.3 ± 0.01 | 8.33 ± 0.00 |
ethanol | 14.5 ± 0.64 | 108 ± 0.01 | 5.00 ±0.002 | |
M. charantia | aqueous | 17.4 ± 4.55 | 61.33 ± 0.01 | 7.67 ± 0.001 |
ethanol | 28.2 ± 1.90 | 388 ± 0.00 | 8.00 ± 0.001 | |
Gallic acid | - | 88.8 ± 0.85 | 1216.67 ± .03 | - |
Quercetin | - | - | - | 63 ± 0.002 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Qader, S.W.; Abdulla, M.A.; Chua, L.S.; Najim, N.; Zain, M.M.; Hamdan, S. Antioxidant, Total Phenolic Content and Cytotoxicity Evaluation of Selected Malaysian Plants. Molecules 2011, 16, 3433-3443. https://doi.org/10.3390/molecules16043433
Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S. Antioxidant, Total Phenolic Content and Cytotoxicity Evaluation of Selected Malaysian Plants. Molecules. 2011; 16(4):3433-3443. https://doi.org/10.3390/molecules16043433
Chicago/Turabian StyleQader, Suhailah Wasman, Mahmood Ameen Abdulla, Lee Suan Chua, Nigar Najim, Mazatulikhma Mat Zain, and Salehhuddin Hamdan. 2011. "Antioxidant, Total Phenolic Content and Cytotoxicity Evaluation of Selected Malaysian Plants" Molecules 16, no. 4: 3433-3443. https://doi.org/10.3390/molecules16043433
APA StyleQader, S. W., Abdulla, M. A., Chua, L. S., Najim, N., Zain, M. M., & Hamdan, S. (2011). Antioxidant, Total Phenolic Content and Cytotoxicity Evaluation of Selected Malaysian Plants. Molecules, 16(4), 3433-3443. https://doi.org/10.3390/molecules16043433