Chromium (VI) Ion Adsorption Features of Chitosan Film and Its Chitosan/Zeolite Conjugate 13X Film
Abstract
:1. Introduction
2. Results and Discussion
2.1. Film characterization
Film (w/v) | Solution | Solubility | Film (w/v) | Solution | Solubility |
---|---|---|---|---|---|
CS 0.5% | H2O pH 4.0 | 27.71% | CS 0.5% | Cr(VI) 5 mg/L pH 4.0 | 23.40% |
CS 1.5% | H2O pH 4.0 | 30.82% | CS 0.5% | Cr(VI) 260 mg/L pH 4.0 | 2.60% |
CS 2.5% | H2O pH 4.0 | 33.31% | CS/Zeo | Cr(VI) 5 mg/L pH 4.0 | 35.96% |
CS 0.5% | H2O pH 6.0 | 18.70% | CS/Zeo | Cr(VI) 260 mg/L pH 4.0 | 25.54% |
CS 1.5% | H2O pH 6.0 | 25.93% | CS 0.5% | Cr(VI) 5 mg/L pH 6.0 | 12.31% |
CS 2.5% | H2O pH 6.0 | 29.29% | CS 0.5% | Cr(VI) 260 mg/L pH 6.0 | 30.51% |
CS/Zeo | H2O pH 4.0 | 18.80% | CS/Zeo | Cr(VI) 5 mg/L pH 6.0 | 35.81% |
CS/Zeo | H2O pH 6.0 | 16.40% | CS/Zeo | Cr(VI) 260 mg/L pH 6.0 | 40.92% |
2.2. Adsorption/desorption Experiments
2.3. Adsorption isotherms
Variables | Equilibrium Isotherms Models |
---|---|
Qmax = 66.8000, b = 0.0030, R2 = 0.9940 (pH 4.0) | Langmuir |
Qmax = 21.0370, b = 0.0081, R2 = 0.9830 (pH 6.0) | |
Kf = 0.3679, n = 1.2548, R2 = 0.9893 (pH4.0) | Freudlich |
kf = 0.6949, n = 1.8027, R2 = 0.9977 (pH 6.0) | |
Kr = 0.2004, aR = 0.0030, β = 1.0000, R2 = 0.9940 (pH 4.0) | Redlich-Peterson |
3. Experimental
3.1. Materials
3.2. Film Preparation and Characterization
3.3. Adsorption/Desorption experiments
4. Conclusions
Acknowledgements
References
- Don, T.-M.; King, C.-F.; Chiu, W.-Y. Preparation of chitosan-graft-poly(vinyl acetate) copolymers and their adsorption of copper ion. Polym. J. 2002, 34, 418–425. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.D. Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interface Sci. 2008, 143, 48–67. [Google Scholar] [CrossRef]
- Silva, B.; Figueiredo, B.; Quintelas, C.; Neves, I.C.; Tavares, T. Zeolites as supports for the biorecovery of hexavalent and trivalent chromium. Micropor. Mesopor. Mat. 2008, 116, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Quintelas, C.; Fonseca, B.; Silva, B.; Figueiredo, H.; Tavares, T. Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresource Technol. 2009, 100, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K. Copper and chromium(VI) removal by chitosan derivatives—Equilibrium and kinetic studies. Chem. Eng. J. 2009, 152, 440–448. [Google Scholar]
- Abdel-Razek, A.S.; Abdel-Ghany, T.M.; Mahmoud, S.A.; El-Sheikh, H.H.; Mahmoud, M.S. The use of free and immobilized Cunninghamella elegans for removing cobalt ions from aqueous waste solutions. World J. Microb. Biot. 2010, 25, 2137–2145. [Google Scholar]
- Pradhan, S.; Shukla, S.S.; Dorris, K.L. Removal of nickel from aqueous solutions using crab shells. J. Hazard. Mater. 2005, 25, 201–204. [Google Scholar]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Qiao, X.; Chung, T.-S.; Rajagopalan, R. Zeolite filled P84 co-polyimide membranes for dehydration of isopropanol through pervaporation process. Chem. Eng. J. 2006, 61, 6816–6825. [Google Scholar] [CrossRef]
- Liu, B.; Cao, Y.; Wang, T.; Yuan, Q. Preparation of novel ZSM-5 zeolite-filled chitosan membranes for pervaporation separation of dimethyl carbonate/methanol mixtures. J. Appl. Polymer Sci. 2007, 106, 2117–2125. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, X.; Wu, H.; Zheng, B.; Jiang, Z.; Hao, X.; Wang, B. Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. J. Power Source 2008, 178, 9–19. [Google Scholar] [CrossRef]
- Takahashi, T.; Imai, M.; Suzuki, I. Water permeability of chitosan membrane involved in deacetylation degree control. Biochem. Eng. J. 2007, 36, 43–48. [Google Scholar] [CrossRef]
- Casariego, A.; Souza, B.W.S.; Cerqueira, M.A.; Teixeira, J.A.; Cruz, L.; Díaz, R.; Vicente, A.A. Chitosan/clay films properties as affected by biopolymer and clay micro/nanoparticles concentrations. Food Hydrocolloid. 2009, 23, 1895–1902. [Google Scholar] [CrossRef] [Green Version]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Chen, A.-H.; Liu, S.-C.; Chen, C.-Y.; Chen, C.-Y. Comparative adsorption of Cu(II), Zn(II) and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191. [Google Scholar] [CrossRef]
- Kittur, A.; Kulkarni, S.; Aralaguppi, M.; Kariduraganavar, M. Preparation and characterization of novel pervaporation membranes for the separation of water–isopropanol mixtures using chitosan and NaY zeolite. J. Membrane Sci. 2005, 247, 75–86. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, D.; Du, G.; Li, X.; Chen, J. Preparation and characterization of hyaluronan/chitosan scaffold crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Polym. Int. 2007, 56, 738–745. [Google Scholar] [CrossRef]
- Baroni, P.; Vieira, R.S.; Meneghetti, E.; Silva, M.G.C.; Beppu, M.M. Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. J. Hazard. Mater. 2008, 152, 1155–1163. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951–967. [Google Scholar] [CrossRef]
- Santiago, I.; Worland, V.P.; Cazares-Rivera, E.; Cadena, F.C. Adsorption of Hexavalent Chromium onto Tailored Zeolites. In Proceedings of 47th Purdue Industrial Waste Conference, West Lafayette, IN, USA, 11-13 May 1992; Lewis Publishers, Inc.: Chelsea, MI, USA, 1992; Volume 1, pp. 669–710. [Google Scholar]
- Aydın, Y.; Aksoy, N. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chem. Eng. J. 2009, 151, 188–194. [Google Scholar] [CrossRef]
- Guibal, E.; Van Vooren, M.; Dempsey, B.A.; Roussy, J. A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep. Sci. Technol. 2006, 41, 2487–2514. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage. 2010, 91, 1915–1929. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024–1025. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Trussell, R.R. Standard Methods for the Examination of Water and Wastewater, 17th ed; APHA: Washington, DC, USA, 1989. [Google Scholar]
- Jin, L.; Bai, R. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 2002, 18, 9765–9770. [Google Scholar] [CrossRef]
- Sample Availability: Contact the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Batista, A.C.L.; Villanueva, E.R.; Amorim, R.V.S.; Tavares, M.T.; Campos-Takaki, G.M. Chromium (VI) Ion Adsorption Features of Chitosan Film and Its Chitosan/Zeolite Conjugate 13X Film. Molecules 2011, 16, 3569-3579. https://doi.org/10.3390/molecules16053569
Batista ACL, Villanueva ER, Amorim RVS, Tavares MT, Campos-Takaki GM. Chromium (VI) Ion Adsorption Features of Chitosan Film and Its Chitosan/Zeolite Conjugate 13X Film. Molecules. 2011; 16(5):3569-3579. https://doi.org/10.3390/molecules16053569
Chicago/Turabian StyleBatista, Anabelle C. L., Emílio R. Villanueva, Rosa Valéria S. Amorim, Maria Teresa Tavares, and Galba M. Campos-Takaki. 2011. "Chromium (VI) Ion Adsorption Features of Chitosan Film and Its Chitosan/Zeolite Conjugate 13X Film" Molecules 16, no. 5: 3569-3579. https://doi.org/10.3390/molecules16053569
APA StyleBatista, A. C. L., Villanueva, E. R., Amorim, R. V. S., Tavares, M. T., & Campos-Takaki, G. M. (2011). Chromium (VI) Ion Adsorption Features of Chitosan Film and Its Chitosan/Zeolite Conjugate 13X Film. Molecules, 16(5), 3569-3579. https://doi.org/10.3390/molecules16053569