Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Essential Oils
No. | Compounds | RI a | Relative amount (%) c | Identification | |||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | |||||
Sesquiterpenes and aromatics | 80.00 | 89.01 | 8.93 | ||||
1 | Benzylacetone * | 1257 | 7.91 | 2.34 | - b | RI,MS, | |
2 | Vanillin | 1418 | - | - | 0.46 | RI[15],MS | |
3 | α-Humulene | 1464 | 0.30 | - | - | RI,MS,[16,17] | |
4 | α-Selinene | 1493 | 0.45 | 3.71 | - | RI[18],MS | |
5 | α-Agarofuran | 1535 | - | 0.24 | - | RI[18],MS | |
6 | Elemol | 1556 | 0.32 | 0.71 | - | RI[19,24],MS | |
7 | 2,6-Dimethyl-10-methylene-12-oxatricyclo[7.3.1.0(1,6)]tridec-2-ene | 1576 | 0.37 | 0.61 | - | MS | |
8 | 5β,7βH,10α-Eudesm-11-en-1α-ol | 1583 | 0.54 | 0.66 | - | MS | |
9 | Caryophyllene oxide | 1588 | 2.22 | 2.12 | - | RI[19,24],MS | |
10 | 2H-Benzocyclohepten-2-one, 3,4,4a,5,6,7,8,9-octahydro-4a-methyl-, (S)- | 1593 | - | 0.20 | - | MS | |
11 | Isoaromadendrene epoxide | 1606 | 0.94 | 2.77 | - | RI[20],MS | |
12 | γ-Eudesmol | 1632 | 1.06 | 2.84 | 0.50 | RI[21],MS[22] | |
13 | Hinesol | 1638 | 6.34 | 0.34 | - | RI[23],MS | |
14 | Agarospirol | 1643 | 0.80 | 4.03 | 0.85 | RI[24],MS | |
15 | Cubenol | 1647 | 2.21 | 1.97 | - | RI[25],MS | |
16 | cis-Z-α-Bisabolene epoxide | 1651 | 0.83 | 0.78 | - | RI[26],MS | |
17 | (-)-Aristolene | 1654 | 0.61 | 4.70 | 1.31 | MS[22] | |
18 | Guaiol | 1661 | 9.34 | 10.67 | 2.18 | MS[27,28,29] | |
19 | Eudesm-7(11)-en-4α-ol | 1666 | 4.35 | 2.09 | - | RI,MS[30] | |
20 | Aromadendrene oxide (1) | 1674 | 1.27 | 1.41 | - | RI[31],MS | |
21 | 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-2-ol | 1678 | 1.19 | 1.33 | - | RI[20],MS | |
22 | α-Copaen-11-ol | 1686 | 4.06 | 10.22 | - | RI,MS[32] | |
23 | 4,4,11,11-tetramethyl-7-tetracyclo-[6.2.1.0(3.8)0(3.9)]undecanol | 1690 | 0.53 | 1.50 | - | MS | |
24 | Bicyclo[4,4,0]dec-2-ene-4-ol,2-methyl-9-[prop-1-en-3-ol-2-yl] | 1697 | 3.11 | 0.52 | - | MS | |
25 | Diepi-α-cedrene epoxide | 1701 | 6.00 | 0.38 | - | MS | |
26 | Aromadendrene oxide (2) | 1705 | - | 1.88 | - | RI[33],MS | |
27 | Baimuxinal | 1707 | 2.44 | 14.78 | 1.52 | MS[27,28,32] | |
28 | Selina-3,11-dien-14-al | 1733 | 5.50 | 0.38 | - | RI[18], MS | |
29 | 5(1H)-Azulenone, 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylethylidene)-, (8S-cis)- | 1736 | 0.21 | 1.03 | - | RI,MS | |
30 | Guaia-1(10),11-dien-9-one | 1753 | 10.89 | - | - | RI[18],MS | |
31 | 1,2,5,5,8a-Pentamethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-1-ol | 1755 | - | 5.82 | - | RI[34],MS | |
32 | 6-Isopropenyl-4,8a-dimethyl-3,5,6,7,8,8a-hexahydro-2(1H)-naphthalenone | 1769 | 1.65 | 0.54 | - | RI[34],MS | |
33 | Eremophila-7(11),9-dien-8-one | 1811 | 4.54 | 5.42 | 2.11 | RI[34],MS | |
34 | Acetic acid, 3-hydroxy-6-isopropenyl-4,8a,dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl ester | 1847 | - | 3.04 | - | RI[34],MS | |
Fatty acid and Alkanes | 5.75 | 0.64 | 79.31 | ||||
35 | Tetradecanoic acid | 1772 | - | - | 2.36 | RI[35],MS | |
36 | Nonanoic acid | 1278 | - | - | 1.50 | RI[36],MS | |
37 | n-Decanoic acid | 1371 | - | - | 0.52 | RI[36],MS | |
38 | cis-5-Dodecenoic acid | 1863 | 0.20 | - | - | RI[34],MS | |
39 | Pentadecanoic acid | 1878 | - | - | 4.87 | RI[34],MS | |
40 | cis-9-Hexadecenoic acid | 1955 | - | - | 2.87 | RI[34],MS | |
41 | n-Hexadecanoic acid | 1982 | 0.30 | 0.06 | 49.47 | RI[34],MS | |
42 | Hexadecanoic acid, ethyl ester | 1996 | - | - | 1.13 | RI[34],MS | |
43 | Eicosane | 1999 | 0.22 | 0.58 | - | RI[34],MS | |
44 | Heptadecanoic acid | 2073 | - | - | 0.37 | RI[34],MS | |
45 | Heneicosane | 2100 | 0.51 | - | 1.09 | RI[34],MS | |
46 | Oleic Acid | 2153 | - | - | 10.18 | RI[34],MS | |
47 | Docosane | 2200 | 0.80 | - | 0.53 | RI[34],MS | |
48 | Tricosane | 2300 | 0.97 | - | 0.80 | RI[34],MS | |
49 | Tetracosane | 2400 | 0.79 | - | 0.86 | RI[34],MS | |
50 | Pentacosane | 2500 | 0.70 | - | 0.87 | RI[34],MS | |
51 | Hexacosane | 2600 | 0.62 | - | 0.80 | RI[34],MS | |
52 | Heptacosane | 2700 | 0.45 | - | 0.57 | RI[34],MS | |
53 | Octacosane | 2800 | 0.20 | - | 0.54 | RI[34],MS | |
Others | 4.26 | 2.51 | 7.44 | ||||
54 | 2-Hydroxycyclopentadecanone | 1851 | 0.24 | 0.30 | 2.32 | RI[37],MS | |
55 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 1869 | 0.69 | - | 0.85 | RI[37],MS | |
56 | Dibutyl phthalate | 1962 | 2.13 | 1.23 | 2.47 | RI[37],MS | |
57 | 1,2,3,4-Tetrahydro-1-nonylnaphthalene | 2021 | 0.64 | - | - | MS | |
58 | 8,9-Dehydro-9-formyl-cycloisolongifolene | 2082 | 0.56 | 0.98 | - | MS | |
59 | γ-Palmitolactone | 2111 | - | - | 0.99 | RI[34],MS | |
60 | 4,8,12,16-Tetramethylheptadecan-4-olide | 2357 | - | - | 0.42 | RI[34],MS | |
61 | 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester | 2541 | - | - | 0.39 | RI[37],MS | |
TOTAL | 90.01 | 92.16 | 95.68 |
2.2. Antimicrobial Activities
Essential oil | E. coli | S. aureus | B. subtilis | |
---|---|---|---|---|
S1 | AWD a | 8.14 ± 0.05 | 10.29 ± 0.20 | 11.68 ± 0.26 |
MIC b | 6.25 | 3.125 | 0.39 | |
MBC c | 25 | 6.25 | 12.5 | |
S2 | AWD a | 7.00 ± 0.02 | 11.25 ± 0.02 | 11.57 ± 0.02 |
MIC b | 6.25 | 0.195 | 0.195 | |
MBC c | 12.5 | 6.25 | 12.5 | |
S3 | AWD a | 7.52 ± 0.26 | 8.10 ± 0.24 | 9.39 ± 0.30 |
MIC b | 12.5 | 1.56 | 0.78 | |
MBC c | >25 | 12.5 | >25 | |
Gentamicin | AWD a | 23.08 ± 0.88 | 21.45 ± 1.77 | 23.73 ± 0.32 |
MIC b | 0.487 | 0.487 | 0.487 | |
MBC c | 0.487 | 0.487 | 0.487 | |
DMSO | AWD a | 0 | 0 | 0 |
ddH2O | AWD a | 0 | 0 | 0 |
3. Experimental
3.1. Plant Material
Brief Name | Stimulating method | Characterization | Age | Plant origin |
---|---|---|---|---|
S1 | chemical method | agarwood | 6 years | A. sinensis |
S2 | unknown natural factor | agarwood | unknown | A. sinensis |
S3 | no damage | healthy trees | 6 years | A. sinensis |
3.2. Isolation of Essential Oils
3.3. GC-MS Analysis
3.4. Identification of Components
3.5. Antimicrobial Activity
3.5.1. Test Microorganisms
3.5.2. Determination of Diameters of Inhibition Zone
3.5.3. Determination of Minimum Inhibitory Concentration (MIC)
3.5.4. Determination of Minimum Bactericidal Concentration (MBC)
3.5.5. Data Analysis
4. Conclusions
Acknowledgments
References and Notes
- Okudera, Y.; Ito, M. Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Biotechnol. 2009, 26, 307–315. [Google Scholar] [CrossRef]
- Kakino, M.; Tazawa, S.; Maruyama, H.; Tsuruma, K.; Araki, Y.; Shimazawa, M.; Hara, H. Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Comple. Altern. Med. 2010, 10, 68–75. [Google Scholar] [CrossRef]
- Gerard, A.P. Agarwood: the life of a wounded tree. Newsletter 2007, 45, 24–25. [Google Scholar]
- CITES. Amendments to Appendices I and II of CITES. In Proceedings of Thirteenth Meeting of the Conference of the Parties, Bangkok, Thailand, 3–14 October 2004. Unpublished.
- Barden, A.; Anak, N.A.; Mulliken, T.; Song, M. Heart of the matter: Agarwood use and trade and CITES Implementation for Aquailaria malaccencis. Traffic Network Rep. 2000, 46, 17–18. [Google Scholar]
- Mohd, F.M.; Mohd, R.Y.; Lim, H.F.; Alias, R. Costs and benefits analysis of Aquilaria species on plantation for agarwood production in Malaysia. Int. J. Busi. Soc. Sci. 2010, 1, 162–174. [Google Scholar]
- Blanchette, R.A.; Heuveling, V.B.H. Cultivated agarwood. US 7,638,145 B2 29 December 2009. [Google Scholar]
- Qi, S.Y. Aquilaria species: in vitro culture and the production of eaglewood (agarwood) (Medicinal and Aromatic Plants III). In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer Verlag: Berlin, Germany, 1995; Volume 8, pp. 36–44. [Google Scholar]
- Chen, H.Q.; Wei, J.H.; Yang, J.S.; Zhang, Z.; Yang, Y. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem. Biodiver. 2011. [Google Scholar] [CrossRef]
- Pojanagaroon, S.; Kaewrak, C. Mechanical methods to stimulate aloes wood formation in Aquilaria crassna Pierre ex H. Lec. (Kritsana) trees. In Congress on Medicinal and Aromatic Plants; Jatisatienr, A., Paratasilpin, T., Elliott, S., Anusarnsunthorn, V., Wedge, D., Craker, L.E., Gardner, Z.E., Eds.; Acta Horticulturae: Leuven, Thailand, 2003; Volume 2, pp. 161–166. [Google Scholar]
- Zhang, Z.; Yang, Y.; Meng, H.; Sui, Ch.; Wei, J.H.; Chen, H.Q. Advances in studies on mechanism of agarwood formation in Aquilaria sinensis and its hypothesis of agarwood formation induced by defense response. Chin. Tradit. Herbal Drugs 2010, 41, 156–160. [Google Scholar]
- Tamuli, P.; Boruah, P.; Nath, S.C.; Leclercq, P. Essential oil of eaglewood tree: a product of pathogenesis. J. Essent. Oil Res. 2005, 17, 601–604. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Begum, J.; Bhuiyan, M.N.H. Analysis of essential oil of eaglewood tree (Aquilaria agallocha Roxb.) by gas chromatography mass spectrometry. Bangladesh J. Pharm. 2009, 4, 24–28. [Google Scholar]
- Lin, F.; Mei, W.L.; Wu, J.; Dai, H.F. GC-MS analysis of volatile constituents from Chinese eaglewood produced by artificial methods. J. Chin. Med. Mater. 2010, 33, 222–225. [Google Scholar]
- Jarunrattanasri, A.; Theerakulkait, C.; Cadwallader, K.R. Aroma components of acid-hydrolyzed vegetable protein made by partial hydrolysis of rice bran protein. J. Agric. Food Chem. 2007, 55, 3044–3050. [Google Scholar] [CrossRef]
- Ito, M.; Okimoto, K.; Yagura, T.; Honda, G. Induction of sesquiterpenoid production by Methyl Jasmonate in Aquilaria sinensis cell suspension culture. J. Essent. Oil Res. 2005, 17, 175–180. [Google Scholar] [CrossRef]
- Kumeta, Y.; Ito, M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 2010, 154, 1998–2007. [Google Scholar] [CrossRef]
- Wetwitayaklung, P.; Thavanapong, N.; Charoenteeraboon, J. Chemical constituents and antimicrobial activity of essential oil and extracts of heartwood of Aquilaria crassna obtained from water distillation and supercritical fluid carbon dioxide extraction. Silpakorn Univ. Sci. Tech. J. 2009, 3, 25–33. [Google Scholar]
- Skaltsa, H.D.; Mavrommati, A.; Constantinidis, T. A chemotaxonomic investigation of volatile constituents in Stachys subsect. Swainsonianeae (Labiatae). Phytochemistry 2001, 57, 235–244. [Google Scholar]
- Vujisic, L.; Vuckovic, I.; Tesevic, V.; Dokovic, D.; Ristic, M.S.; Janackovic, P.; Milosavljevic, S. Comparative examination of the essential oils of Anthemis ruthenica and A. arvensis wild-growing in Serbia. Flavour Fragr. J. 2006, 21, 458–461. [Google Scholar] [CrossRef]
- Moreira, D.d.L.; Guimaraes, E.F.; Kaplan, M.A.C. Non-polar constituents from leaves of piper lhotzkyanum. Phytochemistry 1998, 49, 1339–1342. [Google Scholar] [CrossRef]
- Yu, F.; Harada, H.; Yamasaki, K.; Okamoto, S.; Hirase, S.; Tanaka, Y.; Misawa, N.; Utsumi, R. Isolation and functional characterization of a beta-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Lett. 2008, 582, 565–567. [Google Scholar] [CrossRef]
- Lazari, D.M.; Skaltsa, H.D.; Constantinidis, T. Volatile constituents of Centaurea pelia DC., C. thessala Hausskn. subsp. drakiensis (Freyn & Sint.) Georg. and C. zuccariniana DC. from Greece. Flavour Fragr. J. 2000, 15, 7–11. [Google Scholar] [CrossRef]
- Saroglou, V.; Dorizas, N.; Kypriotakis, Z.; Skaltsa, H.D. Analysis of the essential oil composition of eight Anthemis species from Greece. J. Chromatogr. A 2006, 1104, 313–322. [Google Scholar]
- Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem. 2007, 55, 7093–7098. [Google Scholar] [CrossRef]
- Zakaria, C.A.; Marcelline, A.; Sylvies, B.; Christian, B.; Timothée, O.; Eewan, P.; Pierre, C. Composition, and antimicrobial and remarkable antiprotozoal activities of the essential oil of Rhizomes of Aframomum sceptrum K. SCHUM. (Zingiberaceae). Chem. Biodiver. 2011, 8, 658–667. [Google Scholar] [CrossRef]
- Mei, W.L.; Zeng, Y.B.; Liu, J.; Dai, H.F. GC-MS analysis of volatile constituents from five different kinds of Chinese eaglewood. J. Chin. Med. Mater. 2007, 30, 551–555. [Google Scholar]
- Mei, W.L.; Zeng, Y.B.; Liu, J.W.; Cui, H.B.; Dai, H.F. Chemical Composition and Anti-MRSA Activity of the Essential Oil from Chinese Eaglewood. J. Chin. Pharm. Sci. 2008, 17, 225–229. [Google Scholar]
- Liang, Z.Y.; Zhang, D.L.; Liu, C.S.; Yang, J.F. Determination of Chemical Composition of the Essential Oil from Aquilaria sinensis (Lour.) Gilg by CGC-MS. Nat. Sci. J. Hainan Univ. 2005, 23, 228–232. [Google Scholar]
- Toyota, M.; Saito, T.; Asakawa, Y. The absolute configuration of eudesmane-type sesquiterpenoids found in the Japanese liverwort Chiloscyphus polyanthus. Phytochemistry 1999, 51, 913–920. [Google Scholar] [CrossRef]
- Kristiawan, M.; Sobolik, V.; Al-Haddad, M.; Allaf, K. Effect of pressure-drop rate on the isolation of cananga oil using instantaneous controlled pressure-drop process. Chem. Eng. Proc. 2008, 47, 66–75. [Google Scholar] [CrossRef]
- Yang, J.S.; Chen, Y.W. Studies on the constituents of Aquilaria sinensis (Lour.) Gilg. I. Isolation and structure elucidation of two new sesquiterpenes, baimuxinic acid and baimuxinal. Acta Pharm. Sinica 1983, 18, 191–198. [Google Scholar]
- Raal, A.; Kaur, H.; Orav, A.; Arak, E.; Kailas, T.; Muurisepp, M. Content and composition of essential oils in some Asteraceae species. Proc. Estonian Acad. Sci. 2011, 60, 55–63. [Google Scholar] [CrossRef]
- Tret'yakov, K.V. Retention Data. NIST Mass Spectrometry Data Center. NIST Mass Spectrometry Data Center. 2008. Available online: http://chemdata.nist.gov/mass-spc/pubs/pittcon-2000/index.htm (accessed on 6 May 2011).
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential oil composition of Achillea lingulata and A. umbellata. Flavour Fragr. J. 2007, 22, 184–187. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Comparison of the volatile composition in thyme honeys from several origins in Greece. J. Agric. Food Chem. 2007, 55, 8152–8157. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Zhao, C.X.; Liang, Y.Z.; Yang, H.; Fang, H.Z.; Yi, L.Z.; Zeng, Z.D. Comparative analysis of volatile components from Clematis species growing in China. Anal. Chim. Acta 2007, 595, 328–339. [Google Scholar] [CrossRef]
- Sokmen, A.; Gulluce, M.; Akpulat, H.A.; Daferera, D.; Tepe, B.; Polissiou, M.; Sokmen, M.; Sahin, F. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 2004, 15, 627–634. [Google Scholar] [CrossRef]
- Cao, L.; Si, J.Y.; Liu, Y.; Sun, H.; Jin, W.; Li, Z.; Zhao, X.H.; Pan, R.L. Essential oil composition, antimicrobial and antioxidant properties of Mosla chinensis Maxim. Food Chem. 2009, 115, 801–805. [Google Scholar] [CrossRef]
- Unlü, M.; Vardar-Unlü, G.; Vural, N.; Dönmez, E.; Ozbaş, Z.Y. Chemical composition, antibacterial and antifungal activity of the essential oil of Thymbra spicata L. from Turkey. Nat. Prod. Res. 2009, 23, 572–579. [Google Scholar] [CrossRef]
- Suttiwet, C. Antimicrobial activity of essential oil from Nelumbo Nucifera Gaertn. Pollen. Int. J. Pharm. 2009, 5, 98–100. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhao, J.L.; Liu, H.; Zhou, L.G.; Liu, Z.L.; Wang, J.G.; Han, J.G.; Yu, Z.; Yang, F.Y. Chemical analysis and biological activity of the essential oils of two valerianaceous species from China: Nardostachys chinensis and Valeriana officinalis. Molecules 2010, 15, 6411–6422. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, H.; Yang, Y.; Xue, J.; Wei, J.; Zhang, Z.; Chen, H. Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Molecules 2011, 16, 4884-4896. https://doi.org/10.3390/molecules16064884
Chen H, Yang Y, Xue J, Wei J, Zhang Z, Chen H. Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Molecules. 2011; 16(6):4884-4896. https://doi.org/10.3390/molecules16064884
Chicago/Turabian StyleChen, Huaiqiong, Yun Yang, Jian Xue, Jianhe Wei, Zheng Zhang, and Hongjiang Chen. 2011. "Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees" Molecules 16, no. 6: 4884-4896. https://doi.org/10.3390/molecules16064884
APA StyleChen, H., Yang, Y., Xue, J., Wei, J., Zhang, Z., & Chen, H. (2011). Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Molecules, 16(6), 4884-4896. https://doi.org/10.3390/molecules16064884