Biocatalytic Resolution of Enantiomeric Mixtures of 1-Aminoethanephosphonic Acid
Abstract
:1. Introduction
2. Results and Discussion
Microorganism | fresh cells: e.e values1/configuration | cells after starvation: e.e values/configuration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Day of transformation | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
Cuninghamella echinulata | 28% R | 42% R | 25% R | 25% R | 13% R | 26% R | 21% R | 13% R | 12% R | 9% R |
Aspergillus fumigatus | 9% S | 10% S | 11% S | 0 | 11% S | 25% S | 13% R | 6% R | 12% R | 13% R |
Beauveria bassiana | 13% R | 4% S2 | 10% R | 6% R | 6% R | 2% S2 | 8% R | 2% S2 | 5% S | 6% R |
Penicillium crustosum | 14% R | 14% R | 3% R2 | 2% R2 | 6% S | 9% R | 8% R | 7% S | 6% S | 0 |
Cladosporium herbarum | 0 | 0 | 6% S | 18% S | 6% R | 0 | 0 | 4% R | 12% S | 3% R2 |
3. Experimental
3.1. General
3.2. Synthesis of 1-aminoethanephosphonic Acid
3.3. Microorganism Cultivation
3.4. Biotransformation: General Procedure
3.5. Derivatization of Enantiomerically Enriched 1-aminoethanephosphonic Acid
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. 2001, 1, 301–312. [Google Scholar]
- Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. J. Med. Chem. 2003, 46, 2641–2655. [Google Scholar] [CrossRef]
- Liu, W.S.; Rogers, C.J.; Fisher, A.J.; Toney, M.D. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow binding inhibition. Biochemistry 2002, 41, 12320–12328. [Google Scholar] [CrossRef]
- Huang, J.; Chen, R. An overview of recent advances on the synthesis and biological activity of α-aminophosphonic acid derivatives. Heteroatom Chem. 2000, 11, 480–492. [Google Scholar] [CrossRef]
- Maier, L.; Diel, P.J. Synthesis, physical and biological properties of the phosphorus analogues of phenylalanine and related compounds. Phosphorus Sulfur 1994, 90, 259–279. [Google Scholar] [CrossRef]
- Lavielle, G.; Hautefaye, P.; Schaeffer, C.; Boutin, J.A.; Cudennec, C.A.; Pierre, A. New α-amino phosphonic acid derivatives of vinblastine: chemistry and antitumor activity. J. Med. Chem. 1991, 34, 1998–2003. [Google Scholar] [CrossRef]
- Kraicheva, I.; Bogomilova, A.; Tsacheva, I.; Momekov, G.; Troev, K. Synthesis, NMR charakterysation and in vitro antitumor evaluation of new aminophosphonic acid diesters. Eur. J. Med. Chem. 2009, 44, 3363–3367. [Google Scholar] [CrossRef]
- Dake, S.A.; Raut, D.S.; Kharat, K.R.; Mhaske, R.S.; Deshmukh, S.U.; Pawar, R.P. Ionic liquid promoted synthesis, antibacterial and in vitro antiproliferative activity of novel α-aminophosphonate derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 2527–2532. [Google Scholar] [CrossRef]
- Mizrahi, D.M.; Waner, T.; Segall, Y. α-Amino acid derived bisphoshonates. Synthesis and anti-resorftive activity. Phosphorus Sulfur 2001, 173, 1–25. [Google Scholar] [CrossRef]
- Green, J.R. Anti-tumor potential of bisphosphonates. Med. Klin. 2000, 95 (Suppl. 2), 23–28. [Google Scholar]
- Oleksyszyn, J. Aminophosphonic and aminophosphinic acid derivatives in the design of transition state analogue inhibitors: biomedical opportunities and limitations. In Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Kukhar, V.P., Hudson, H.R., Eds.; John Wiley & Sons: Chichester, UK, 2000; pp. 537–555. [Google Scholar]
- Markwell, R. Aminophosphonic and aminophosphinic acid derivatives as inhibitors of human collagenase. In Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Kukhar, V.P., Hudson, H.R., Eds.; John Wiley & Sons: Chichester, UK, 2000; pp. 597–621. [Google Scholar]
- Bhadury, P.S.; Song, B.; Yang, S.; Zhang, Y.; Zhang, S. Some potential chiral catalysts for preparation of asymmetric α-aminophosphonates. Curr. Org. Synth. 2008, 5, 134–150. [Google Scholar] [CrossRef]
- Oshikawa, T.; Yamashita, M. Preparation of optically active 1-aminoalkylphosphonic acids from chiral carbamates and chiral ureas. BCSJ 1989, 62, 3177–3181. [Google Scholar] [CrossRef]
- Dhawan, B.; Redmore, D. Optically active 1-aminoalkylphosphonic acids. Phosphorous Sulfur 1987, 32, 119–144. [Google Scholar] [CrossRef]
- Ordonez, M.; Rojas-Cabrera, H.; Cativiela, C. An overview of stereoselective synthesis of α-aminophosphonic acids and derivatives. Tetrahedron 2009, 65, 17–49. [Google Scholar] [CrossRef]
- Ou, L.; Xu, Y.; Ludwig, D.; Pan, J.; Xu, J.H. Chemoenzymatic deracemization of chiral secondary alcohols: Process optimization for production of (R)-1-indanol and (R)-1-phenylethanol. Org. Process Res. Dev. 2008, 12, 192–195. [Google Scholar] [CrossRef]
- Snyder, P.W.; Johannes, M.S.; Vogen, B.N.; Clark, R.L.; Toone, E.J. Biocatalytic microcontact printing. J. Org. Chem. 2007, 72, 7459–7461. [Google Scholar] [CrossRef]
- Adam, W.; Lukacs, Z.; Saha-Moller, C.R.; Schreier, P. Biocatalytic kinetic resolution of racemic hydroperoxides through the enantioselective reduction with free and immobilized microorganisms. JACS 2000, 122, 4887–4892. [Google Scholar]
- Burgess, K.; Jennings, L.D. Biocatalytic resolutions of alpha.-methylene-beta.-hydroxy esters and ketones. J.Org. Chem. 1990, 55, 1138–1139. [Google Scholar] [CrossRef]
- Klimek-Ochab, M.; Żymańczyk-Duda, E.; Brzezińska-Rodak, M.; Majewska, P.; Lejczak, B. Effective fungal catalyzed synthesis of P-chiral organophosphorus compounds. Tetrahedron: Asymmetr. 2008, 19, 450–453. [Google Scholar]
- Li, Y.F.; Hammerschmidt, F. Enzymes in organic chemistry, Part 1: Enantioselective hydrolysis of a-(acyloxy)phosphonates by esterolytic enzymes. Tetrahedron: Asymmetr. 1993, 4, 109–120. [Google Scholar] [CrossRef]
- Majewska, P.; Kafarski, P.; Lejczak, B. Lipase-catalysed resolution of 1-hydroxyethane-P-phenylphosphinates. Pol. J. Chem. 2005, 79, 561–566. [Google Scholar]
- Majewska, P.; Kafarski, P.; Lejczak, B.; Bryndal, I.; Lis, T. An approach the synthesis and assignment of the absolute configuration of all enantiomers of ethyl hydroxy(phenyl)methane(Pphenyl)phosphinate. Tetrahedron: Asymmetr. 2006, 17, 2697–2701. [Google Scholar] [CrossRef]
- Shioji, K.; Tashiro, A.; Shibata, S.; Okuma, K. Synthesis of bifunctional P-chiral hydroxy phosphinates; lipase-catalyzed stereoselective acylation of ethy(hydroxyalkyl)phenyl-phosphinates. Tetrahedron Lett. 2003, 44, 1103–1105. [Google Scholar] [CrossRef]
- Yamagishi, T.; Miyame, T.; Yokomatsu, T.; Shibuya, S. Lipase-catalyzed kinetic resolution of α-hydroxy-H-phosphinates. Tetrahedron Lett. 2004, 45, 6713–6716. [Google Scholar]
- Zhang, Y.; Li, J.F.; Yuan, C.Y. Enzymatic synthesis of optically active trifluoromethylated 1- and 2-hydroxyalkanephosphonates. Tetrahedron 2003, 59, 473–479. [Google Scholar] [CrossRef]
- Żymańczyk-Duda, E.; Klimek-Ochab, M.; Kafarski, P.; Lejczak, B. Stereochemical control of biocatalytic asymmetric reduction of diethyl 2-oxopropylphosphonate employing yeasts. J. Organomet. Chem. 2005, 690, 2593–2596. [Google Scholar] [CrossRef]
- Brzezińska-Rodak, M.; Żymańczyk-Duda, E.; Kafarski, P.; Lejczak, B. Application of fungi as biocatalysts for the reduction of diethyl 1-oxoalkylphosphonates in anhydrous hexane. Biotechnol. Prog. 2002, 18, 1287–1291. [Google Scholar] [CrossRef]
- Telegdi, J.; Kraicsovits, F.; Otvos, L. Resolution of α-aminophosphonic acids by aminoacylase. Phosphorus Sulfur 1983, 18, 412–415. [Google Scholar]
- Telegdi, J.; Moravcsik, E.; Otvos, L. Enzymatic resolution of α-aminophosphonic acids. In FirstInternational Conference on Chemistry and Biotechnology of Biologically Active Natural Products; Atanasova, B., Dutschewska, H., Kortova, I., Tarpanov, V., Trifonov, A., Tsankova, E., Vlahova, R., Eds.; Bulg. Acad. of Sci.: Sofia, Bulgaria, 1981; pp. 221–226. [Google Scholar]
- Zimmermann, G.; Maier., J.; Gloger, M. Process for the preparation of stereoisomers of 1- aminoalkylphosphonic and phosphinic acids. German Patent 40, 06/774, 1985. [Google Scholar]
- Solodenko, V.A.; Kasheva, N.A.; Kukhar, V.P.; Kozlova, E.V.; Mironenko, D.A.; Svedas, V.K. Preparation of optically active 1-aminoalkylphosphonic acids by stereoselective enzymatic hydrolysis of racemic N-acylated 1-aminoalkylphosphonic acids. Tetrahedron 1991, 47, 3989–3998. [Google Scholar] [CrossRef]
- Solodenko, V.A.; Belik, M.Y.; Galushko, S.V.; Kukhar, V.P.; Kozlova, E.V.; Mironenko, D.A.; Svedas, V.K. Enzymatic preparation of both L-and D-enantiomers of phosphonic and phosphonous analogues of alanine using penicillin acylase. Tetrahedron: Asymmetr. 1993, 4, 1965–1968. [Google Scholar] [CrossRef]
- Heisler, A.; Rabiller, C.; Douillard, R.; Goalou, N.; Hägele, G.; Levayer, F. Enzyme catalysed resolution of aminophosphonic acids -I -serin and isoserin analogues. Tetrahedron: Asymmetr. 1993, 4, 959–960. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, C.; Zhang, Y. Enzymatic synthesis of optically active 1-and 2-aminoalkane-phosphonates. Tetrahedron 2003, 59, 6095–6102. [Google Scholar] [CrossRef]
- Kafarski, P.; Lejczak, B.; Szewczyk, J. Optically active 1-aminoalkanephosphonic acids. Dibenzoyl-L-tartaric anhydride as an effective agent for the resolution of racemic diphenyl 1- aminoalkanephosphonates. Can. J. Chem. 1983, 61, 2425–2430. [Google Scholar] [CrossRef]
- Kowalik, J.; Sawka-Dobrowolska, W.; Głowiak, T. Synthesis, molecular structure, and absolute configuration of an optically active (1-Amino-2-phenylethyI)phosphonic acid monohydrate. Chem. Comm. 1984, 446–447. [Google Scholar]
- Żymańczyk-Duda, E.; Brzezińska-Rodak, M.; Klimek-Ochab, M.; Lejczak, B. Application of the Beauveria bassiana strain for the enantioselective oxidation of the diethyl 1-hydroxy-1-phenylmethanephosphonate. Curr. Microbiol. 2011, 62, 1168–1172. [Google Scholar] [CrossRef]
- Kononova, S.V.; Nesmeyanova, M.A. Phosphonates and their degradation by microorganisms. Biochemistry 2002, 67, 184–195. [Google Scholar]
- Klimek-Ochab, M.; Obojska, A.; Picco, A.M.; Lejczak, B. Isolation and characterization of two new microbial strains capable of degradation of the naturally occurring organophosphonate - ciliatine. Biodegradation 2007, 18, 223–231. [Google Scholar] [CrossRef]
- Oleksyszyn, J.; Tyka, R. An improved synthesis of 1-aminophosphonic acids. TetrahedronLett. 1977, 18, 2823–2824. [Google Scholar] [CrossRef]
- Kawai, S.; Uno, B. Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. J. Chromatogr. 1991, 540, 411–415. [Google Scholar] [CrossRef]
- Berlicki, Ł.; Rudzińska, E.; Kafarski, P. Enantiodifferentiation of aminophosphonic and aminophosphinic acids with α-and β-cyclodextrins. Tetrahedron: Asymmetr. 2003, 14, 1535–1539. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brzezińska-Rodak, M.; Klimek-Ochab, M.; Żymańczyk-Duda, E.; Kafarski, P. Biocatalytic Resolution of Enantiomeric Mixtures of 1-Aminoethanephosphonic Acid. Molecules 2011, 16, 5896-5904. https://doi.org/10.3390/molecules16075896
Brzezińska-Rodak M, Klimek-Ochab M, Żymańczyk-Duda E, Kafarski P. Biocatalytic Resolution of Enantiomeric Mixtures of 1-Aminoethanephosphonic Acid. Molecules. 2011; 16(7):5896-5904. https://doi.org/10.3390/molecules16075896
Chicago/Turabian StyleBrzezińska-Rodak, Małgorzata, Magdalena Klimek-Ochab, Ewa Żymańczyk-Duda, and Paweł Kafarski. 2011. "Biocatalytic Resolution of Enantiomeric Mixtures of 1-Aminoethanephosphonic Acid" Molecules 16, no. 7: 5896-5904. https://doi.org/10.3390/molecules16075896
APA StyleBrzezińska-Rodak, M., Klimek-Ochab, M., Żymańczyk-Duda, E., & Kafarski, P. (2011). Biocatalytic Resolution of Enantiomeric Mixtures of 1-Aminoethanephosphonic Acid. Molecules, 16(7), 5896-5904. https://doi.org/10.3390/molecules16075896