Synthesis and NMR-Study of the 2,3,4,5-Tetraethylsilole Dianion [SiC4Et4]2−•2[Li]+
Abstract
:1. Introduction
2. Results and Discussion
2 a | 3 b | Ia b | Ib b | IIa c | III b | IVa b | IVb b |
---|---|---|---|---|---|---|---|
8.30 | 24.96 | 68.54 | 92.79 | 29.77 | 29.00 | 29.19 | 30.44 |
2 a | 3 b | 4 a | 3-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cα | 155.48 | 150.64 | 155.03 | Δδ(Cα) | −4.84 | ||||
Cβ | 130.59 | 127.04 | 139.36 | Δδ(Cβ) | −3.55 | ||||
T | 572.17 | 555.36 | 588.78 | ΔT | −16.78 | ||||
α Et | β Et | α Et | β Et | α Et | β Et | α Et | β Et | ||
C1 | 20.82 | 20.56 | 22.24 | 26.28 | 21.38 | 22.83 | ΔC1 | 1.42 | 5.72 |
C2 | 14.37 | 14.06 | 19.59 | 21.89 | 15.24 | 16.88 | ΔC2 | 5.22 | 7.83 |
2 a | 3 b | 4 a | 3-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
α Et | β Et | α Et | β Et | α Et | β Et | α Et | β Et | ||
CH2 | 2.31 | 2.34 | 2.50 | 2.50 | 2.34 | 2.36 | ΔC1 | 0.19 | 0.16 |
CH3 | 1.03 | 1.18 | 1.13 | 1.13 | 0.99 | 1.05 | ΔC2 | 0.10 | −0.05 |
[Cl2SiC4Ph4] a[1] | Ia b[2] | Ib b[1] | ||||
---|---|---|---|---|---|---|
Cα | 154.74 | 151.22 | 153.74 | |||
Cβ | 132.28 | 129.71 | 130.92 | |||
T | 574.04 | 561.86 | 569.32 | |||
α Ph | β Ph | α Ph | β Ph | α Ph | β Ph | |
Ci | 136.67 | 135.37 | 151.67 | 145.83 | 151.29 | 146.71 |
Co | 139.48 | 129.27 | 129.97 | 133.43 | 129.48 | 133.16 |
Cm | 127.84 | 128.24 | 126.38 | 126.38 | 126.55 | 126.72 |
Cp | 127.37 | 127.10 | 119.48 | 121.83 | 118.25 | 121.42 |
Ci-Cp | 7.00 | 8.27 | 32.19 | 24.00 | 33.04 | 25.29 |
Sum (Ci-Cp) | 17.57 | 56.19 | 58.33 |
3. Experimental
General Procedures
3. Conclusions
Acknowledgments
References
- Joo, W.-C.; Hong, J.-H.; Choi, S.-B.; Son, H.-E. Synthesis and reactivity of 1,1,-disodio-2,3,4,5-tetraphenyl-1-silacyclopentadiene. J. Organomet. Chem. 1990, 391, 27–36. [Google Scholar]
- Hong, J.-H.; Boudjouk, P.; Castellino, S. Synthesis and characterization of two aromatic silicon-containing dianions: The 2,3,4,5-tetraphenylsilole dianion and the 1,1’-disila-2,2’,3,3’,4,4’,5,5’-octaphenylfulvalene dianion. Organometallics 1994, 13, 3387–3389. [Google Scholar]
- Hong, J.-H.; Boudjouk, P. Synthesis and characterization of a delocalized germanium-containing dianion: Dilithio-2,3,4,5-tetraphenyl-germole. Bull. Soc. Chim. Fr. 1995, 132, 495–498. [Google Scholar]
- West, R.; Sohn, H.; Bankwitz, U.; Calabrese, J.; Apeloig, T.; Mueller, T. Dilithium derivative of tetraphenylsilole: An η1-η5 dilithium structure. J. Am. Chem. Soc. 1995, 117, 11608–11609. [Google Scholar]
- Freeman, W.P.; Tilley, T.D.; Yap, G.P.A.; Rheingold, A.L. Siloyl anions and silole dianions: Structure of [K([18]crown-6)+]2[C4Me4Si2-]. Angew. Chem. Int. Ed. 1996, 35, 882–884. [Google Scholar]
- West, R.; Sohn, H.; Powell, D.R.; Mueller, T.; Apeloig, Y. Dianion of tetraphenylgermole is aromatic. Angew. Chem. Int. Ed. 1996, 35, 1002–1004. [Google Scholar]
- Choi, S.-B.; Boudjouk, P.; Hong, J.-H. Unique Bis-η5/η1 bonding in a dianionic germole. Synthesis and structural characterization of the dilithium salt of the 2,3,4,5-tetraethyl germole dianion. J. Am. Chem. Soc. 1999, 18, 2919–2921. [Google Scholar]
- Freeeman, W.P.; Tilley, T.D.; Liable-Sands, L.M.; Rheingold, A.L. Synthesis and study of cyclic π-systems containing silicon and germanium. The question of aromaticity in cyclopentadienyl analogues. J. Am. Chem. Soc. 1996, 118, 10457–10468. [Google Scholar] [CrossRef]
- Goldfuss, B.; Schleyer, P.v.R.; Hampel, F. Aromaticity in silole dianions: Structural, energetic, and magnetic aspects. Organometallics 1996, 15, 1755–1757. [Google Scholar]
- Goldfuss, B.; Schleyer, P.v.R. Aromaticity in group 14 metalloles: Structural, energetic, and magnetic criteria. Organometallics 1997, 16, 1543–1552. [Google Scholar]
- Hissler, M.; Dyer, P.W.; Reau, R. Linear organic π-conjugated systems featuring the heavy group 14 and 15 elements. Coord. Chem. Rev. 2003, 244, 1–44. [Google Scholar] [CrossRef]
- Saito, M.; Yoshioka, M. The anions and dianions of group 14 metalloles. Coord. Chem. Rev. 2005, 249, 765–780. [Google Scholar]
- Saito, M.; Haga, R.; Yoshioka, M. Formation of the first monoanion and dianion of stannole. Chem. Commun. 2002, 1002–1003. [Google Scholar]
- Saito, M.; Haga, R.; Yoshioka, M. Synthesis of stannole anion by alkylation of stannole dianion. Chem. Lett. 2003, 32, 912–913. [Google Scholar]
- Saito, M.; Haga, R.; Yoshioka, M.; Ishimura, K.; Nagase, S. The aromaticity of the stannole dianion. Angew. Chem. Int. Ed. 2005, 44, 6553–6556. [Google Scholar]
- Haga, R.; Saito, M.; Yoshioka, M. Reversible redox behavior between stannole dianion and bistannole-1,2-dianion. J. Am. Chem. Soc. 2006, 128, 4934–4935. [Google Scholar]
- Choi, S.-B.; Boudjouk, P. Synthesis and characterization of dibenzannulated silole dianions. The 1,1-dilithiosilafluorene and 1,1’-dilithiobis(silafluorene) dianions. Tetrahedron Lett. 2000, 41, 6685–6688. [Google Scholar] [CrossRef]
- Liu, Y.L.; Stringfellow, C.; Ballweg, D.; Guzei, I.A.; West, R. Structural and chemistry of 1-silafluorenyl dianion. Its derivatives, and an organosilicon diradical dianion. J. Am. Chem. Soc. 2002, 124, 49–57. [Google Scholar] [CrossRef]
- Choi, S.-B.; Boudjouk, P.; Wei, P. Aromatic benzannulated silole dianions. The dilithio and disodio salts of a silaindenyl dianion. J. Am. Chem. Soc. 1998, 120, 5814–5815. [Google Scholar] [CrossRef]
- Fagan, P.J.; Nugent, W.A.; Calabrese, J.C. Metallacycle transfer from zirconium to main group elements: A versatile synthesis of heterocycles. J. Am. Chem. Soc. 1994, 116, 1880–1889. [Google Scholar] [CrossRef]
- Bankwitz, U.; Sohn, H.; Powell, D.R.; West, R. Synthesis, soilid-state structure, and reduction of 1,1-dichloro-2,3,4,5-tetramethylsilole. J. Organomet. Chem. 1995, 499, C7–C9. [Google Scholar]
- Ashe, A.J., III.; Kampf, J.W.; Al-Taweel, S.M. The synthesis and crystal and molecular structure of 2,5-bis(trimethylsilyl)-3,4-dimethyl-1-bismaferrocene: An aromatic heterocycle containing bismuth. J. Am. Chem. Soc. 1992, 114, 372–374. [Google Scholar]
- According to the theoretical study [9], the reported assignments of Cα and Cβ for the silole dianions have been reversed.
- Mathey, F. The organic chemistry of phospholes. Chem. Rev. 1998, 88, 429–453, references therein.. [Google Scholar]
- Quin, L.D.; Orton, W.L. Evidence for delocalization in phosphole anions from their 31P NMR spectra. J. Chem. Soc. Chem. Commun. 1979, 401–402. [Google Scholar]
- Chesnut, D.B.; Quin, L.D. Characterization of NMR deshielding in phosphole and the phospholide ion. J. Am. Chem. Soc. 1994, 116, 9638–9643. [Google Scholar] [CrossRef]
- Karplus, M.; Das, P.T. Theory of localized contributions to the chemical shift. Application to fluorobenzenes. J. Chem. Phys. 1961, 34, 1683–1692. [Google Scholar] [CrossRef]
- March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, NY, USA, 1992; pp. 14–16, Chapter 1. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the author.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hong, J.-H. Synthesis and NMR-Study of the 2,3,4,5-Tetraethylsilole Dianion [SiC4Et4]2−•2[Li]+. Molecules 2011, 16, 8033-8040. https://doi.org/10.3390/molecules16098033
Hong J-H. Synthesis and NMR-Study of the 2,3,4,5-Tetraethylsilole Dianion [SiC4Et4]2−•2[Li]+. Molecules. 2011; 16(9):8033-8040. https://doi.org/10.3390/molecules16098033
Chicago/Turabian StyleHong, Jang-Hwan. 2011. "Synthesis and NMR-Study of the 2,3,4,5-Tetraethylsilole Dianion [SiC4Et4]2−•2[Li]+" Molecules 16, no. 9: 8033-8040. https://doi.org/10.3390/molecules16098033
APA StyleHong, J. -H. (2011). Synthesis and NMR-Study of the 2,3,4,5-Tetraethylsilole Dianion [SiC4Et4]2−•2[Li]+. Molecules, 16(9), 8033-8040. https://doi.org/10.3390/molecules16098033