Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery
Abstract
:1. Introduction
2. The P2—ATP Activated Receptors
3. Natural Products from Plant Sources Acting on P2 Receptors
Compound | Receptor Type | Effects (IC50/EC50) * | Tested Model | Reference |
---|---|---|---|---|
Mustard oil | P2X3 | Participation in sensitization in nociceptive neurons following MO application to the tooth pulp. ND | Male Sprague-Dawley adult rats | [15] |
Sodium Ferulate | P2X3 | Decreases participation of these receptors in pain after primary sensory afferent chronic injury ND | Rat dorsal root ganglion | [16] |
Tetramethylpyrazine | P2X3 | Inhibition of depolarization, burn injury pain and neuropathic pain induced by α,β-methylene-ATP ND | Rat dorsal root ganglion | [17,18,19,20] |
Puerarin | P2X3 | Impairment of neuropathic pain ND | Dorsal root ganglion neurons | [21,22] |
Emodin | P2X2/3 | Inhibition of the transmission of neuropathic pain stimuli ND | Sprague-Dawley male rats | [23] |
Emodin | P2X7 | Inhibits ATP/BzATP-activated P2X7 receptor IC50 = 200 nM (cell death) | Rat peritoneal macrophages | [24] |
Emodin | P2X7 | Inhibits ATP/BzATP-activated P2X7 receptor IC50 = 500 nM (BzATP- and induced dye uptake) | Rat peritoneal macrophages | [24] |
Emodin | P2X7 | Inhibits ATP/BzATP-activated P2X7 receptor IC50 = 3.4 µM (BzATP-evoked current) | HEK 293 | [24] |
Rheedia.longifolia methanol extract | P2X7 | Inhibits P2X7 receptor-associated pore opening, currents and dye uptake functional assay IC50 = 2 µg/mL (functional assay) | Mouse peritoneal macrophages | [25] |
Flavonoid molecules | P2Y2 | Potent antagonism and inhibition of intracellular calcium release ND | NG108-15 cells | [26] |
Trigonella foenum leaf extract | P2Y12 (?) | Inhibition of ADP-induced platelets aggregation IC50 = 1.28 mg/mL | Rabbit platelets | [27] |
Trigonella foenum leaf extract | P2X | Inhibits α,β-methylene-ATP (30 µM) induced isometric contraction IC50 = 1.57 mg/mL | Mouse vas deferens | [27] |
Colchicine | P2X7 | Inhibits P2X7 receptor-associated pore opening EC50 = 290 μM | Xenopus laevis oocytes | [28] |
Colchicine | P2X7 | Inhibits P2X7 receptor-associated pore opening EC50 = 540 μM | Peritoneal mouse macrophages | [28] |
4. Natural Products from Animal Sources Acting on P2 Receptors
Compound | Receptor Type | Source | Effects (IC50/EC50) * | Tested Model | Reference |
---|---|---|---|---|---|
Halistanol sulfate | P2Y12 | Topsentia sp. | Binds to P2Y12 receptor IC50 = 0.48 µM | 1321N cells | [39] |
Sterol sulfate Sch 572423 | Binds to P2Y12 receptor IC50 = 2.2 µM | 1321N cells | [39] | ||
Iso-iantheran-A | P2Y11 | Ianthella quadrangulata | Activates P2Y11 receptor EC50 = 1.29 µM | 1321N1 wild-type cells | [40] |
Iso-iantheran-B | P2Y11 | Ianthella quadrangulata | Activates P2Y11 receptor EC50 = 0.48 µM | 1321N1 wild-type cells | [40] |
Stylissadines A | P2X7 | Stylissa flabellata | Inhibits BzATP-induced pore formation IC50 = 0.7 µM | THP-1 cells. (Human Monocytes) | [41] |
Stylissadines B | Inhibits BzATP-induced pore formation IC50 = 1.8 µM | THP-1 cells | [41] | ||
Niphatoxin C | P2X7 | Callyspongia sp. | Impairment of P2X7 receptor activity ND | THP-1 cells | [42] |
LL37 | P2X7 | Human neutrophils and epithelial cells | Induces IL-1β maturation and release in LPS-primed monocytes ND | Human monocytes | [43] |
rCRAMP | P2Y | Ratus novergicus | Induction of IL-6 expression and ERK 1/2 in glial cells, blocked by P2Y receptor antagonists ND | Rat glial cells | [44] |
CRAMP | P2X7 | Mus musculus | Inhibition of all responses related to P2X7 activation ND | Peritoneal macrophages | [45] |
Cellular prion protein | P2X4 | Homo sapiens | Prevents and reverses Copper-inhibited ATP-evoked current EC50 = 4.6 µM | Xenopus laevis oocyte | [46] |
Melittin | P2X2/3 and P2X3 | Apitoxin (bee venom) | Antagonists of both receptor suppressed melittin-evoked persistent spontaneous nociception ND | Male Sprague-Dawley albino rats weighing 180–250 g | [47] |
Alphadefensin 1–3 | P2Y6 | Human CD14−/CD24+ cells | Inhibits M-CSF-induced differentiation of CD14−/CD24+ cells through P2Y6 receptor ND | CD14+/CD24− monocytes human cells | [48] |
Ω-Conotoxin GVIA | P2X2/3 | Conus sp. | Inhibits P2X2/3 receptor response IC50 = 3.84 µM | Rat dorsal root ganglion neurons | [49] |
P2X3 | Inhibits P2X3 receptor response IC50 = 21.2 nM | Rat dorsal root ganglion neurons | [49] | ||
Purotoxin-1 | P2X | Lycosa spider | Inhibition of ionic currents in the sensory neurons of rats ND | Rat dorsal root ganglion neurons | [50] |
Purotoxin-1 | P2X3 | Geolycosa sp.spider venom | Potent inhibitory effects ND | Sensory neurons | [51] |
5. Natural Products from Microorganisms Acting on P2 Receptors
Compound | Receptor Type | Source | Effects (IC50/EC50) * | Tested Model | Reference |
---|---|---|---|---|---|
Ivermectin | P2X4 | Streptomyces avermitilis | Positive allosteric effect EC50 = 250 nM | Xenopus laevis oocyte | [56] |
Ivermectin | P2X4 | Streptomyces avermitilis | Blockage of ethanol-inhibitory effects ND | Xenopus laevis oocyte | [62] |
Ivermectin | P2X7 | Streptomyces avermitilis | Positive allosteric effect EC50 = 50 nM (EC50 from high affinity-binding site) | Macrophage from humans | [60] |
Polymyxin B | P2X7 | Bacillus polymyxa | Enhanced P2X7 responses in transfected-HEK293 and K562 cells ND | Mouse and human macrophage cells | [61] |
Pfiesteriatoxin | P2X7 | Pfiesteriapiscicida | Activation of cell permeabilization similarly to ATP activation ND | GH4C1 rat pituitary cells | [63] |
Pfiesteriatoxin | P2X7 | Pfiesteriapiscicida | Induction of toxic and c-fos luciferase that is blocked by oxATP and PPADS ND | GH4C1 rat pituitary cells | [64] |
HlyA | P2X1 and P2X7 | Escherichia coli | Antagonists of both receptor blocked HlyA induced hemolysis ND | Human, mouse and equine Erythrocytes | [65] |
Cytotoxic factors | P2X7 | Pseudomonas aeruginosastrain 808 | P2X7 receptor participation in ATP-dependent pathway ND | J774 macrophage cell line | [66] |
Leukotoxin | P2X7 | Aggregatibacter actinomycetemcomitans | Leukotoxin-induced proinflammatory responses, release of IL-1β and IL-18 are blocked by oxATP ND | Human macrophages | [67] |
Oxo-AHL | P2Y2 and P2Y4 | Pseudomonasaeruginosa | Inhibits P2Y2 and P2Y4 expression in cystic fibrosis IC 50 = 0.3 pM | HTGS cell line MM39 | [68] |
LPS | P2X7 | Gram-negative bacteria | P2X7 receptor modulates LPS-induced responses ND | Murine Peritoneal Macrophages | [69] |
LPS | P2X7 | Gram-negative bacteria | P2X7 receptor inhibition in TLR-4-defficient cell ND | HEK293 cells | [70] |
LPS | P2Y6 | Gram-negative bacteria | Vascular inflammation following selective induction of endothelial P2Y6 receptor ND | HMEC-1 | [71] |
LOS | P2X | Gram-negative bacteria | Inhibition of P2X receptor decrease LOS-induced caspase-8 activation and apoptosis ND | Primary bovine pulmonary artery endothelial cells | [72] |
6. Conclusions
Acknowledgments
References
- Musselman, L. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics; John Wiley & Sons: New York, NY, USA, 1996; p. 422. [Google Scholar]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef]
- Ley, S.V.; Baxendale, I.R. New tools and concepts for modern organic synthesis. Nat. Rev. Drug Discov. 2002, 1, 573–586. [Google Scholar] [CrossRef]
- Geysen, H.M.; Schoenen, F.; Wagner, D.; Wagner, R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat. Rev. Drug Discov. 2003, 2, 222–230. [Google Scholar] [CrossRef]
- Lombardino, J.G.; Lowe, J.A. The role of the medicinal chemist in drug discovery—Then and now. Nat. Rev. Drug Discov. 2004, 3, 853–862. [Google Scholar] [CrossRef]
- Portales-Cervantes, L.; Niño-Moreno, P.; Doníz-Padilla, L.; Baranda-Candido, L.; García-Hernández, M.; Salgado-Bustamante, M.; González-Amaro, R.; Portales-Pérez, D. Expression and function of the P2X(7) purinergic receptor in patients with systemic lupus erythematosus and rheumatoid arthritis. Hum. Immunol. 2010, 71, 818–825. [Google Scholar]
- Inoue, K. P2 receptors and chronic pain. Purinergic Signal. 2007, 3, 135–144. [Google Scholar] [CrossRef]
- Tsuda, M.; Tozaki-Saitoh, H.; Inoue, K. Pain and purinergic signaling. Brain Res. Rev. 2010, 63, 222–232. [Google Scholar] [CrossRef]
- White, N.; Burnstock, G. P2 receptors and cancer. Trends Pharmacol. Sci. 2006, 27, 211–217. [Google Scholar] [CrossRef]
- Guile, S.D.; Alcaraz, L.; Birkinshaw, T.N.; Bowers, K.C.; Ebden, M.R.; Furber, M.; Stocks, M.J. Antagonists of the P2X(7) receptor. From lead identification to drug development. J. Med. Chem. 2009, 52, 3123–3141. [Google Scholar] [CrossRef]
- Boeynaems, J.M.; Communi, D.; Gonzalez, N.S.; Robaye, B. Overview of the P2 receptors. Semin. Thromb. Hemost. 2005, 31, 139–149. [Google Scholar] [CrossRef]
- Lazarowski, E.R.; Boucher, R.C.; Harden, T.K. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol. 2003, 64, 785–795. [Google Scholar] [CrossRef]
- Virginio, C.; MacKenzie, A.; Rassendren, F.A.; North, R.A.; Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 1999, 2, 315–321. [Google Scholar] [CrossRef]
- Faria, R.X.; Defarias, F.P.; Alves, L.A. Are second messengers crucial for opening the pore associated with P2X7 receptor? Am. J. Physiol. Cell Physiol. 2005, 288, C260–C271. [Google Scholar] [CrossRef]
- Hu, B.; Chiang, C.Y.; Hu, J.W.; Dostrovsky, J.O.; Sessle, B.J. P2X receptors in trigeminal subnucleus caudalis modulate central sensitization in trigeminal subnucleus oralis. J. Neurophysiol. 2002, 88, 1614–1624. [Google Scholar]
- Zhang, A.; Gao, Y.; Zhong, X.; Xu, C.; Li, G.; Liu, S.; Lin, J.; Li, X.; Zhang, Y.; Liu, H.; et al. Effect of sodium ferulate on the hyperalgesia mediated by P2X3 receptor in the neuropathic pain rats. Brain Res. 2010, 1313, 215–221. [Google Scholar]
- Liang, S.D.; Gao, Y.; Xu, C.S.; Xu, B.H.; Mu, S.N. Effect of tetramethylpyrazine on acute nociception mediated by signaling of P2X receptor activation in rat. Brain Res. 2004, 995, 247–252. [Google Scholar] [CrossRef]
- Liang, S.D.; Xu, C.S.; Zhou, T.; Liu, H.Q.; Gao, Y.; Li, G. L. Tetramethylpyrazine inhibits ATP-activated currents in rat dorsal root ganglion neurons. Brain Res. 2005, 1040, 92–97. [Google Scholar]
- Gao, Y.; Xu, C.; Yu, K.; Li, G.; Wan, F.; Liu, S.; Lin, J.; Liu, H.; Zhang, J.; Li, X.; et al. Effect of tetramethylpyrazine on DRG neuron P2X3 receptor involved in transmitting pain after burn. Burns 2010, 36, 127–134. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, S.D.; Shao, L.J.; Mu, S.N.; Xu, C.S.; Zhang, C.P. Effect of tetramethylpyrazine on neuropathic pain mediated by P2X3 receptor. Acta Pharmacol. Sin. 2006, 77, 27–32. [Google Scholar]
- Xu, C.; Li, G.; Gao, Y.; Liu, S.; Lin, J.; Zhang, J.; Li, X.; Liu, H.; Liang, S. Effect of puerarin on P2X3 receptor involved in hyperalgesia after burn injury in the rat. Brain Res. Bull. 2009, 80, 341–346. [Google Scholar] [CrossRef]
- Xu, C.; Xu, W.; Xu, H.; Xiong, W.; Gao, Y.; Li, G.; Liu, S.; Xie, J.; Tu, G.; Peng, H.; et al. Role of puerarin in the signalling of neuropathic pain mediated by P2X3 receptor of dorsal root ganglion neurons. Brain Res. Bull. 2012, 87, 37–43. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H.; Deng, L.; Zhu, G.; Xu, C.; Li, G.; Liu, S.; Xie, J.; Liu, J.; Kong, F.; et al. Effect of emodin on neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons. Brain Res. Bull. 2011, 84, 406–413. [Google Scholar] [CrossRef]
- Liu, L.; Zou, J.; Liu, X.; Jiang, L.H.; Li, J. Inhibition of ATP-induced macrophage death by emodin via antagonizing P2X7 receptor. Eur. J. Pharmacol. 2010, 640, 15–19. [Google Scholar] [CrossRef]
- Santos, J.A.; Fidalgo-Neto, A.A.; Faria, R.X.; Simões, A.; Calheiros, A.S.; Bérenger, A.L.; Faria-Neto, H.C.; Figueiredo, M.R.; Frutuoso, V.S.; Alves, L.A. Effect of Rheedia longifolia leaf extract and fractions on the P2X7 receptor in vitro: novel antagonists? J. Med. Food 2011, 14, 920–929. [Google Scholar] [CrossRef]
- Kaulich, M.; Streicher, F.; Mayer, R.; Müller, I.; Müller, C.E. Flavonoids—Bovel lead compounds for the development of P2Y2 receptor antagonists. 2003, 59, 72–81. [Google Scholar]
- Parvizpur, A.; Ahmadiani, A.; Kamalinejad, M. Probable role of spinal purinoceptors in the analgesic effect of Trigonella foenum (TFG) leaves extract. J. Ethnopharmacol. 2006, 104, 108–112. [Google Scholar] [CrossRef]
- Marques-da-Silva, C.; Chaves, M.M.; Castro, N.G.; Coutinho-Silva, R.; Guimaraes, M.Z. Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br. J. Pharmacol. 2011, 163, 912–926. [Google Scholar] [CrossRef]
- Zhang, A.; Xu, C.; Liang, S.; Gao, Y.; Li, G.; Wei, J.; Wan, F.; Liu, S.; Lin, J. Role of sodium ferulate in the nociceptive sensory facilitation of neuropathic pain injury mediated by P2X(3) receptor. Neurochem. Int. 2008, 53, 278–282. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, C.; Liang, S.; Zhang, A.; Mu, S.; Wang, Y.; Wan, F. Effect of tetramethylpyrazine on primary afferent transmission mediated by P2X3 receptor in neuropathic pain states. Brain Res. Bull. 2008, 77, 27–32. [Google Scholar] [CrossRef]
- Shemon, A.N.; Sluyter, R.; Conigrave, A.D.; Wiley, J.S. Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor. Br. J. Pharmacol. 2004, 142, 1015–1019. [Google Scholar] [CrossRef]
- Said, T.; Dutot, M.; Christon, R.; Beaudeux, J.L.; Martin, C.; Warnet, J.M.; Rat, P. Benefits and side effects of different vegetable oil vectors on apoptosis, oxidative stress, and P2X7 cell death receptor activation. Invest. Ophthalmol. Vis. Sci. 2007, 48, 5000–5006. [Google Scholar] [CrossRef]
- Marques da Silva, C.; Miranda Rodrigues, L.; Passos da Silva Gomes, A.; Mantuano Barradas, M.; Sarmento Vieira, F.; Persechini, P.M.; Coutinho-Silva, R. Modulation of P2X7 receptor expression in macrophages from mineral oil-injected mice. Immunobiology 2008, 213, 481–492. [Google Scholar] [CrossRef]
- Mendes, A.; Desgranges, C.; Chèze, C.; Vercauteren, J.; Freslon, J.L. Vasorelaxant effects of grape polyphenols in rat isolated aorta. Possible involvement of a purinergic pathway. Fundam. Clin. Pharmacol. 2003, 17, 673–681. [Google Scholar] [CrossRef]
- Luzak, B.; Golanski, J.; Rozalski, M.; Krajewska, U.; Olas, B.; Watala, C. Extract from Aronia melanocarpa fruits potentiates the inhibition of platelet aggregation in the presence of endothelial cells. Arch. Med. Sci. 2010, 6, 141–144. [Google Scholar]
- Oh, W.-J.; Endale, M.; Park, J.-Y.; Kwak, Y.-S.; Kim, S.; Kim, G.-S.; Rhee, M.H. The inhibitory effect of Opuntia humifusa Raf. Ethyl acetate extract on platelet aggregation. J. Med. Plants Res. 2011, 5, 1418–1424. [Google Scholar]
- Ahmadiani, A.; Javan, M.; Semnanian, S.; Barat, E.; Kamalinejad, M. Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. J. Ethnopharmacol. 2001, 75, 283–286. [Google Scholar] [CrossRef]
- Javan, M.; Ahmadiani, A.; Semnanian, S.; Kamalinejad, M. Antinociceptive effects of Trigonella foenum-graecum leaves extract. J. Ethnopharmacol. 1997, 58, 125–129. [Google Scholar] [CrossRef]
- Yang, S.W.; Buivich, A.; Chan, T.M.; Smith, M.; Lachowicz, J.; Pomponi, S.A.; Wright, A.E.; Mierzwa, R.; Patel, M.; Gullo, V.; et al. A new sterol sulfate, Sch 572423, from a marine sponge, Topsentia sp. Bioorg. Med. Chem. Lett. 2003, 13, 1791–1794. [Google Scholar]
- Greve, H.; Meis, S.; Kassack, M.U.; Kehraus, S.; Krick, A.; Wright, A.D.; König, G.M. New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y(11) receptor. J. Med. Chem. 2007, 50, 5600–5607. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Carroll, A.R.; Addepalli, R.; Avery, V.M.; Hooper, J.N.; Quinn, R.J. Natural products, stylissadines A and B, specific antagonists of the P2X7 receptor, an important inflammatory target. J. Org. Chem. 2007, 72, 2309–2317. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Carroll, A.R.; Addepalli, R.; Avery, V.M.; Hooper, J.N.; Quinn, R.J. Niphatoxin C, a cytotoxic tripyridine alkaloid from Callyspongia sp. J. Nat. Prod. 2007, 70, 2040–2041. [Google Scholar] [CrossRef]
- Elssner, A.; Duncan, M.; Gavrilin, M.; Wewers, M.D. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J. Immunol. 2004, 172, 4987–4994. [Google Scholar]
- Brandenburg, L.O.; Jansen, S.; Wruck, C.J.; Lucius, R.; Pufe, T. Antimicrobial peptide rCRAMP induced glial cell activation through P2Y receptor signalling pathways. Mol. Immunol. 2010, 47, 1905–1913. [Google Scholar] [CrossRef]
- Seil, M.; Kabré, E.; Nagant, C.; Vandenbranden, M.; Fontanils, U.; Marino, A.; Pochet, S.; Dehaye, J.P. Regulation by CRAMP of the responses of murine peritoneal macrophages to extracellular ATP. Biochim. Biophys. Acta 2010, 1798, 569–578. [Google Scholar]
- Lorca, R.A.; Chacón, M.; Barría, M.I.; Inestrosa, N.C.; Huidobro-Toro, J.P. The human prion octarepeat fragment prevents and reverses the inhibitory action of copper in the P2X4 receptor without modifying the zinc action. J. Neurochem. 2003, 85, 709–716. [Google Scholar] [CrossRef]
- Lu, Z.M.; Xie, F.; Fu, H.; Liu, M.G.; Cao, F.L.; Hao, J.; Chen, J. Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochem. Res. 2008, 33, 2085–2091. [Google Scholar] [CrossRef]
- Droin, N.; Jacquel, A.; Hendra, J.B.; Racoeur, C.; Truntzer, C.; Pecqueur, D.; Benikhlef, N.; Ciudad, M.; Guery, L.; Jooste, V.; et al. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 2010, 115, 78–88. [Google Scholar] [CrossRef]
- Lalo, U.V.; Pankratov, Y.V.; Arndts, D.; Krishtal, O.A. Omega-conotoxin GVIA potently inhibits the currents mediated by P2X receptors in rat DRG neurons. Brain Res. Bull. 2001, 54, 507–512. [Google Scholar] [CrossRef]
- Savchenko, H.A.; Vasylevs’kyĭ, A.A.; Pluzhnykov, K.A.; Korol’kova, I.V.; Mamenko, M.V.; Volkova, T.M.; Maksymiuk, O.P.; Boĭchuk, I.A.; Hrishyn, I.V.; Kryshtal’, O.O. Peptide components of Geolycosa spider venom modulate P2X receptor activity of rat sensory neurons. Fiziol. Zh. 2009, 55, 11–16. [Google Scholar]
- Grishin, E.V.; Savchenko, G.A.; Vassilevski, A.A.; Korolkova, Y.V.; Boychuk, Y.A.; Viatchenko-Karpinski, V.Y.; Nadezhdin, K.D.; Arseniev, A.S.; Pluzhnikov, K.A.; Kulyk, V.B.; et al. Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Ann. Neurol. 2010, 67, 680–683. [Google Scholar]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2001, 18, 1–49. [Google Scholar] [CrossRef]
- Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus venom peptide pharmacology. Pharmacol. Rev. 2012, 64, 259–298. [Google Scholar] [CrossRef]
- Lewis, R.J.; Nielsen, K.J.; Craik, D.J.; Loughnan, M.L.; Adams, D.A.; Sharpe, I.A.; Luchian, T.; Adams, D.J.; Bond, T.; Thomas, L.; et al. Novel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J. Biol. Chem. 2000, 275, 35335–35344. [Google Scholar]
- Burkhart, C.N. Ivermectin: an assessment of its pharmacology, microbiology and safety. Vet. Hum. Toxicol. 2000, 42, 30–35. [Google Scholar]
- Khakh, B.S.; Proctor, W.R.; Dunwiddie, T.V.; Labarca, C.; Lester, H.A. Allosteric control of gating and kinetics at P2X(4) receptor channels. J. Neurosci. 1999, 19, 7289–7299. [Google Scholar]
- Priel, A.; Silberberg, S.D. Mechanism of ivermectin facilitation of human P2X4 receptor channels. J. Gen. Physiol. 2004, 123, 281–293. [Google Scholar] [CrossRef]
- Sim, J.A.; Park, C.K.; Oh, S.B.; Evans, R.J.; North, R.A. P2X1 and P2X4 receptor currents in mouse macrophages. Br. J. Pharmacol. 2007, 152, 1283–1290. [Google Scholar] [CrossRef]
- Bowler, J.W.; Bailey, R.J.; North, R.A.; Surprenant, A. P2X4, P2Y1 and P2Y2 receptors on rat alveolar macrophages. Br. J. Pharmacol. 2003, 140, 567–575. [Google Scholar] [CrossRef]
- Nörenberg, W.; Sobottka, H.; Hempel, C.; Plötz, T.; Fischer, W.; Schmalzing, G.; Schaefer, M. Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors. Br. J. Pharmacol. 2012, 167, 48–66. [Google Scholar] [CrossRef]
- Ferrari, D.; Pizzirani, C.; Adinolfi, E.; Forchap, S.; Sitta, B.; Turchet, L.; Falzoni, S.; Minelli, M.; Baricordi, R.; di Virgilio, F. The antibiotic polymyxin B modulates P2X7 receptor function. J. Immunol. 2004, 173, 4652–4660. [Google Scholar]
- Asatryan, L.; Popova, M.; Perkins, D.; Trudell, J.R.; Alkana, R.L.; Davies, D.L. Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors. J. Pharmacol. Exp. Ther. 2010, 334, 720–728. [Google Scholar] [CrossRef]
- Melo, A.C.; Moeller, P.D.; Glasgow, H.; Burkholder, J.M.; Ramsdell, J.S. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida. Environ. Health Perspect. 2001, 109 Suppl 5, 731–737. [Google Scholar]
- Kimm-Brinson, K.L.; Moeller, P.D.; Barbier, M.; Glasgow, H.; Burkholder, J.M.; Ramsdell, J.S. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida. Environ. Health Perspect. 2001, 109, 457–462. [Google Scholar]
- Skals, M.; Jorgensen, N.R.; Leipziger, J.; Praetorius, H.A. Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc. Natl. Acad. Sci. USA 2009, 106, 4030–4035. [Google Scholar] [CrossRef]
- Zaborina, O.; Dhiman, N.; Ling Chen, M.; Kostal, J.; Holder, I.A.; Chakrabarty, A.M. Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology 2000, 146, 2521–2530. [Google Scholar]
- Kelk, P.; Abd, H.; Claesson, R.; Sandström, G.; Sjöstedt, A.; Johansson, A. Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin. Cell Death Dis. 2011, 2, e126. [Google Scholar] [CrossRef]
- Saleh, A.; Figarella, C.; Kammouni, W.; Marchand-Pinatel, S.; Lazdunski, A.; Tubul, A.; Brun, P.; Merten, M.D. Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone inhibits expression of P2Y receptors in cystic fibrosis tracheal gland cells. Infect. Immun. 1999, 67, 5076–5082. [Google Scholar]
- Le Feuvre, R.A.; Brough, D.; Iwakura, Y.; Takeda, K.; Rothwell, N.J. Priming of macrophages with lipopolysaccharide potentiates P2X7-mediated cell death via a caspase-1-dependent mechanism, independently of cytokine production. J. Biol. Chem. 2002, 277, 3210–3218. [Google Scholar]
- Leiva-Salcedo, E.; Coddou, C.; Rodríguez, F.E.; Penna, A.; Lopez, X.; Neira, T.; Fernández, R.; Imarai, M.; Rios, M.; Escobar, J.; et al. Lipopolysaccharide inhibits the channel activity of the P2X7 receptor. Mediators Inflamm. 2011, 2011, 152625. [Google Scholar]
- Riegel, A.K.; Faigle, M.; Zug, S.; Rosenberger, P.; Robaye, B.; Boeynaems, J.M.; Idzko, M.; Eltzschig, H.K. Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood. 2011, 117, 2548–2555. [Google Scholar] [CrossRef]
- Sylte, M.J.; Kuckleburg, C.J.; Inzana, T.J.; Bertics, P.J.; Czuprynski, C.J. Stimulation of P2X receptors enhances lipooligosaccharide-mediated apoptosis of endothelial cells. J. Leukoc. Biol. 2005, 77, 958–965. [Google Scholar] [CrossRef]
- Kachlany, S.C. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J. Dent. Res. 2010, 89, 561–570. [Google Scholar] [CrossRef]
- Guthmiller, J.M.; Lally, E.T.; Korostoff, J. Beyond the specific plaque hypothesis: Are highly leukotoxic strains of Actinobacillus actinomycetemcomitans a paradigm for periodontal pathogenesis? Crit. Rev. Oral Biol. Med. 2001, 12, 116–124. [Google Scholar] [CrossRef]
- Johansson, A.; Sandström, G.; Claesson, R.; Hänström, L.; Kalfas, S. Anaerobic neutrophil-dependent killing of Actinobacillus actinomycetemcomitans in relation to the bacterial leukotoxicity. Eur. J. Oral Sci. 2000, 108, 136–146. [Google Scholar]
- Hata, J.S.; Fick, R.B. Pseudomonas aeruginosa and the airways disease of cystic fibrosis. Clin. Chest Med. 1988, 9, 679–689. [Google Scholar]
- Knowles, M.R.; Clarke, L.L.; Boucher, R.C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N. Engl. J. Med. 1991, 325, 533–538. [Google Scholar] [CrossRef]
- Aksoy, M.O.; Kelsen, S.G. Relaxation of rabbit tracheal smooth muscle by adenine nucleotides: mediation by P2-purinoceptors. Am. J. Respir. Cell Mol. Biol. 1994, 10, 230–236. [Google Scholar]
- Latifi, A.; Foglino, M.; Tanaka, K.; Williams, P.; Lazdunski, A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 1996, 21, 1137–1146. [Google Scholar]
- Swift, S.; Throup, J.P.; Williams, P.; Salmond, G.P.; Stewart, G.S. Quorum sensing: A population-density component in the determination of bacterial phenotype. Trends Biochem. Sci. 1996, 21, 214–219. [Google Scholar]
- Chiao, C.W.; Tostes, R.C.; Webb, R.C. P2X7 receptor activation amplifies lipopolysaccharide-induced vascular hyporeactivity via interleukin-1 beta release. J. Pharmacol. Exp. Ther. 2008, 326, 864–870. [Google Scholar] [CrossRef]
- Ho, N.W.; Chen, Z.; Brainard, A.P.; Sedlak, M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol. 1999, 65, 163–192. [Google Scholar]
- Davies, D.L.; Machu, T.K.; Guo, Y.; Alkana, R.L. Ethanol sensitivity in ATP-gated P2X receptors is subunit dependent. Alcohol. Clin. Exp. Res. 2002, 26, 773–778. [Google Scholar] [CrossRef]
- Ostrovskaya, O.; Asatryan, L.; Wyatt, L.; Popova, M.; Li, K.; Peoples, R.W.; Alkana, R.L.; Davies, D.L. Ethanol is a fast channel inhibitor of P2X4 receptors. J. Pharmacol. Exp. Ther. 2011, 337, 171–179. [Google Scholar] [CrossRef]
- Fischer, W.; Wirkner, K.; Weber, M.; Eberts, C.; Köles, L.; Reinhardt, R.; Franke, H.; Allgaier, C.; Gillen, C.; Illes, P. Characterization of P2X3, P2Y1 and P2Y4 receptors in cultured HEK293-hP2X3 cells and their inhibition by ethanol and trichloroethanol. J. Neurochem. 2003, 85, 779–790. [Google Scholar] [CrossRef]
- Davies, D.L.; Kochegarov, A.A.; Kuo, S.T.; Kulkarni, A.A.; Woodward, J.J.; King, B.F.; Alkana, R.L. Ethanol differentially affects ATP-gated P2X(3) and P2X(4) receptor subtypes expressed in Xenopus oocytes. Neuropharmacology 2005, 49, 243–253. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Faria, R.; Ferreira, L.; Bezerra, R.; Frutuoso, V.; Alves, L. Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery. Molecules 2012, 17, 13009-13025. https://doi.org/10.3390/molecules171113009
Faria R, Ferreira L, Bezerra R, Frutuoso V, Alves L. Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery. Molecules. 2012; 17(11):13009-13025. https://doi.org/10.3390/molecules171113009
Chicago/Turabian StyleFaria, Robson, Leonardo Ferreira, Rômulo Bezerra, Valber Frutuoso, and Luiz Alves. 2012. "Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery" Molecules 17, no. 11: 13009-13025. https://doi.org/10.3390/molecules171113009
APA StyleFaria, R., Ferreira, L., Bezerra, R., Frutuoso, V., & Alves, L. (2012). Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery. Molecules, 17(11), 13009-13025. https://doi.org/10.3390/molecules171113009