Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater
Abstract
:1. Introduction
Type of the waste | Chemicals added | Amount of the chemicals Mg2+:NH4+-N: PO43−-P | Initial concentrations (mg/L) | Removal (%) | pH | Ref. | ||
---|---|---|---|---|---|---|---|---|
NH4+-N | COD | NH4+-N | COD | |||||
Landfill leachates | MgCl2·6H2O + Na2HPO4·12H2O | 1:1:1 | 2750 | 3720 | 92 | NI | 9 | [5] |
Industrial wastewater | Bittern + KH2PO4 | 1.6:0.6:1 | 110 | NI | 91 | NI | 9.6 | [6] |
Effluent of a sewage sludge anaerobic digester | MgCl2·6H2O + 85% H3PO4 | 1.5:1:1 | 749 | 936.4 | 89.35 | 39.78 | 9 | [10] |
Coking wastewater | MgCl2·6H2O + Na2HPO4·12H2O | 1:1:1 | 500 | 200 | 88 | NI | 9.5 | [15] |
Effluent of UASB treating poultry manure wastewater | MgCl2·6H2O + KH2PO4 | 1:1:1 | 1318 | 1800 | 85.4 | 54 | 9 | [16] |
Effluent from the anaerobic treatment of the baker’s yeast industry | MgCl2·6H2O + Na2HPO4 | 1.1:1:1.1 | 735 | NI | 83 | NI | 9.2 | [17] |
Swine wastewater | MgCl2·6H2O + K2HPO4 | 1:1:1 | 844.5 | 2139 | 88 | 47 | 9 | [18] |
2. Results and Discussion
2.1. Batch Testing with Nine Combinations of Chemicals
2.2. Effect of pH
2.3. Effect of the Mg2+:NH4+-N:PO43−-P Molar Ratio
2.4. Effect of Mixing Time
3. Experimental
3.1. 7-ACA Wastewater
Parameter | Concentration range |
---|---|
Total suspended solid (mg/L) | 662 ± 97 |
COD (mg/L) | 10850 ± 364 |
pH | 12.2 ± 0.3 |
NH4+-N (mg/L) | 1120 ± 82 |
PO43−-P (mg/L) | 36 ± 2 |
Turbidity (NTU) | 71 ± 19 |
Biological oxygen demand (mg/L) | Under limitation |
3.2. Reagents
3.3. Experimental Procedures
Entry | pH | Molar ratio of Mg2+:NH4+-N:PO43−-P | Amount of 85% H3PO4 + MgCl2·6H2O (g + g) | Mixing time (min) |
---|---|---|---|---|
1 | 7 | 1:1:1 | 12.5 + 6.1 | 15 |
2 | 8 | 1:1:1 | 12.5 + 6.1 | 15 |
3 | 8.5 | 1:1:1 | 12.5 + 6.1 | 15 |
4 | 9 | 1:1:1 | 12.5 + 6.1 | 15 |
5 | 10 | 1:1:1 | 12.5 + 6.1 | 15 |
6 | 11 | 1:1:1 | 12.5 + 6.1 | 15 |
7 | 9 | 0.8:1:1 | 10 + 6.1 | 15 |
8 | 9 | 0.9:1:1 | 11.3 + 6.1 | 15 |
9 | 9 | 1.1:1:1 | 13.8 + 6.1 | 15 |
10 | 9 | 1.2:1:1 | 15 + 6.1 | 15 |
11 | 9 | 1.3:1:1 | 16.3 + 6.1 | 15 |
12 | 9 | 1:1:0.8 | 12.5 + 4.9 | 15 |
13 | 9 | 1:1:0.9 | 12.5 + 5.5 | 15 |
14 | 9 | 1:1:1.1 | 12.5 + 6.7 | 15 |
15 | 9 | 1:1:1.2 | 12.5 + 7.3 | 15 |
16 | 9 | 1:1:1.3 | 12.5 + 7.9 | 15 |
17 | 9 | 1:1:1.1 | 12.5 + 6.7 | 5 |
18 | 9 | 1:1:1.1 | 12.5 + 6.7 | 10 |
19 | 9 | 1:1:1.1 | 12.5 + 6.7 | 20 |
20 | 9 | 1:1:1.1 | 12.5 + 6.7 | 30 |
21 | 9 | 1:1:1.1 | 12.5 + 6.7 | 60 |
3.4. Analytical Methods
3.5. Observation and Identification of Crystals
4. Conclusions
Acknowledgments
- Sample Availability: Not available.
References and Notes
- Liikanen, A.; Martikainen, P.J. Effect of ammonium andoxygen on methane and nitrous oxide fluxes acrosssediment-water interface in a eutrophic lake. Chemosphere 2003, 8, 1287–1293. [Google Scholar]
- Lopata, K.R.; Auerswald, L.; Cook, P. Ammonia toxicity and its effect on the growth of the South Africa abalone haliotis midae linnaeus. Aquaculture 2006, 261, 678–687. [Google Scholar] [CrossRef]
- Lee, S.I.; Weon, S.Y.; Lee, C.W.; Koopman, B. Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere 2003, 51, 265–271. [Google Scholar] [CrossRef]
- Doyle, J.D.; Parsons, S.A. Struvite formation, control and recovery. Water Res. 2002, 16, 3925–3940. [Google Scholar]
- Li, X.Z.; Zhao, Q.L. Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecol. Eng. 2003, 20, 171–181. [Google Scholar] [CrossRef]
- Diwani, G.E.; Rafie, S.E.; Ibiari, N.N.E.; El-Aila, H.I. Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination 2007, 214, 200–214. [Google Scholar] [CrossRef]
- Ronteltap, M.; Maurer, M.; Gujer, W. Struvite precipitation thermodynamics in source-separated urine. Water Res. 2007, 5, 977–984. [Google Scholar]
- Nelson, N.O.; Mikkelsen, R.L.; Hesterberg, D.L. Struvite precipitation in anaerobic swine lagoon liquid: Effect of pH and Mg:P ratio and determination of rate constant. Bioresource Technol. 2003, 3, 229–236. [Google Scholar]
- Kim, D.; Kim, J.; Ryu, H.D.; Lee, S.-I. Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater. Bioresource Technol. 2009, 100, 74–78. [Google Scholar] [CrossRef]
- Münch, E.V.; Barr, K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res. 2001, 35, 151–159. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhao, Q.L. Efficiency of biological treatmentaffected by high strength of ammonium-nitrogen in leachateand chemical precipitation of ammonium-nitrogen as pretreatment. Chemosphere 2001, 44, 37–43. [Google Scholar] [CrossRef]
- Uludag-Demirer, S.; Demirer, G.N.; Chen, S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process Biochem. 2005, 40, 3667–3674. [Google Scholar] [CrossRef]
- Ryu, H.D.; Kim, D.; Lee, S.I. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. J. Hazard. Mater. 2008, 156, 163–169. [Google Scholar] [CrossRef]
- Marti, N.; Bouzas, A.; Seco, A.; Ferrer, J. Struvite precipitation assessment in anaerobic digestion processes. Chem. Eng. J. 2007, 141, 67–74. [Google Scholar]
- Zhang, T.; Ding, L.; Ren, H.; Xiong, X. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Res. 2009, 43, 5209–5215. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Sapci-Zengin, S. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J. Hazard. Mater. 2009, 166, 260–269. [Google Scholar] [CrossRef]
- Altinbas, M.; Ozturk, I.; Aydin, A.F. Ammonia recovery from high strength agro-industry effluents. Water Sci. Technol. 2002, 45, 189–196. [Google Scholar]
- Ryu, H.D.; Lee, S. Application of struvite precipitation as a pretreatment in treating swine wastewater. Process Biochem. 2010, 45, 563–572. [Google Scholar] [CrossRef]
- Stratful, I.; Scrimshaw, M.D.; Lester, N.J. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res. 2001, 35, 4191–4199. [Google Scholar]
- Suzuki, K.; Tanaka, Y.; Osada, T.; Waki, M. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Res. 2002, 12, 2991–2998. [Google Scholar]
- Celen, I.; Buchanan, J.R.; Burns, R.T.; Robinson, R.B.; Raman, D.R. Using chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Res. 2007, 41, 1689–1696. [Google Scholar] [CrossRef]
- Jaffer, T.A.; Clark, P.P.; Parsons, S.A. Potential phosphorus recovery by struvite formation. Water Res. 2002, 36, 1834–1842. [Google Scholar] [CrossRef]
- Song, Y.H.; Yuan, P.; Zheng, B.H.; Peng, J.; Yuan, F.; Gao, Y. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 2007, 69, 319–324. [Google Scholar] [CrossRef]
- Booker, N.A.; Priestley, A.J.; Fraser, I.H. Struvite formation in wastewater treatment plants: Opportunities for nutrient recovery. Environ. Technol. 1999, 20, 777–782. [Google Scholar] [CrossRef]
- Tünay, O.; Kabdasli, I.; Orhon, D.; Kolçak, S. Ammonia removal by magnesium ammonium 35 phosphate precipitation in industrial wastewaters. Water Sci. Technol. 1997, 36, 225–228. [Google Scholar]
- Li, X.Z.; Zhao, Q.L.; Hao, X.D. Ammonium removal from landfill leachate by chemical precipitation. Waste Manag. 1999, 19, 409–415. [Google Scholar] [CrossRef]
- Lei, X.; Shimada, S.; Intabon, K.; Maekawa, T. Pretreatment of methane fermentation effluent by physico-chemical processes before applied to soil trenchsystem. Agric. Eng. Int. CIGR Ejournal 2006, 8, 1–15. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association/American Water Works Association/Water Pollution Control Federation: Washington DC, WA, USA, 1998.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, Z.; Ren, X.; Zuo, J.; Liu, Y.; Duan, E.; Yang, J.; Chen, P.; Wang, Y. Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater. Molecules 2012, 17, 2126-2139. https://doi.org/10.3390/molecules17022126
Li Z, Ren X, Zuo J, Liu Y, Duan E, Yang J, Chen P, Wang Y. Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater. Molecules. 2012; 17(2):2126-2139. https://doi.org/10.3390/molecules17022126
Chicago/Turabian StyleLi, Zaixing, Xuguang Ren, Jiane Zuo, Yanfang Liu, Erhong Duan, Jingliang Yang, Ping Chen, and Yongjun Wang. 2012. "Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater" Molecules 17, no. 2: 2126-2139. https://doi.org/10.3390/molecules17022126
APA StyleLi, Z., Ren, X., Zuo, J., Liu, Y., Duan, E., Yang, J., Chen, P., & Wang, Y. (2012). Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater. Molecules, 17(2), 2126-2139. https://doi.org/10.3390/molecules17022126