Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants
Abstract
:Abbreviations
ABTS: | 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid |
AMVN: | 2,2'-azobis(2,4-dimethylvaleronitrile) |
ANS: | 8-anilino-1-naphthalenesulfonic acid |
16-AP: | 16-(9-anthroyloxy) palmitic acid |
AscH−: | ascorbate |
Car: | carotenoid |
β-Car: | β-carotene |
DPPC: | dipalmitoyl phosphatidyl choline |
EC: | (−)-epicatechin |
EGC: | (−)-epigallocatechin |
ECG: | (−)-epicatechin gallate |
EGCG: | (−)-epigallocatechin gallate |
ET: | electron transfer |
HAT: | hydrogen atom transfer |
N-HPT: | N-hydroxypyridine-2(1H)-thione |
PC: | phosphatidyl choline |
RAF: | radical adduct formation |
ROS: | reactive oxygen species |
SAR: | structure-activity relationship |
TOH: | tocopherol |
1. Introduction
2. Radical Scavenging of Flavonoids and Carotenoids
2.1. Flavonoids
2.2. Carotenoids
3. Flavonoid Interactions with Carotenoids in Heterogeneous Systems
3.1. Heterogeneous Systems with Flavonoids and Carotenoids
3.2. Carotenoid and Vitamin Antioxidants
3.3. Interactions among Carotenoids
3.4. Flavonoid Interaction with Carotenoids
sample | daidzein | puerarin | baicalein | baicalin | quercetin | rutin | EC | EGC | ECG | EGCG |
---|---|---|---|---|---|---|---|---|---|---|
SEor AE (%) | −29 | 47 | −20 | 0 | 52 | 32 | −62 | −30 | −52 | −48 |
4. Future Trends
Acknowledgements
- Sample Availability: Contact the authors.
References and Notes
- Demmig-Adams, B.; Adams, W.W., III. Antioxidants in photosynthesis and human nutrition. Science 2002, 298, 2149–2153. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Beutner, S.; Bloedorn, B.; Frixel, S.; Blanco, I.H.; Hoffmann, T.; Martin, H.-D.; Mayer, B.; Noack, P.; Ruck, C.; Schmidt, M.; et al. Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: Carotenoids, flavonoids, phenols and indigoids. The role of β-carotene in antioxidant functions. J. Sci. Food Agric. 2001, 81, 559–568. [Google Scholar]
- Ruck, C.; Schmidt, M.; Frixel, S.; Ernst, H.; Walsh, R.; Martin, H.-D. Assessment of Carotenoid Function during Antioxidant Activity. Special Publication in Biologically-Active Phytochemicals in Food Analysis, Metabolism, Bioavailability and Function; Royal Society of Chemistry: Cambridge, UK, 2001. [Google Scholar]
- Stahl, W.; Sies, H. Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight. Mol. Biotechnol. 2007, 37, 26–30. [Google Scholar] [CrossRef]
- Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 2010, 52, 98–111. [Google Scholar] [CrossRef]
- Paiva, S.A.; Russell, R.M. β-Carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar]
- Pauwels, E.K.J.; Erba, P.A.; Kostkiewicz, M. Antioxidants: A tale of two stories. Drug. News Perspect. 2007, 20, 579–585. [Google Scholar] [CrossRef]
- Dreher, D.; Junod, A.F. Role of oxygen free radicals in cancer development. Eur. J. Cancer 1996, 32, 30–38. [Google Scholar] [CrossRef]
- Kehrer, J.P. Free radicals and mediators of tissue injury and disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar]
- Halliwell, B. Oxidative stress, nutrition and health. Free Radic. Res. 1996, 25, 57–74. [Google Scholar] [CrossRef]
- Abidi, S.; Ali, A. Role of oxygen free radicals in the pathogenesis and etiology of cancer. Cancer Lett. 1999, 142, 1–9. [Google Scholar] [CrossRef]
- Laguerre, M.; Lecomte, J.; Villeneuve, P. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Prog. Lipid Res. 2007, 46, 244–282. [Google Scholar] [CrossRef]
- Krinsky, N.I. Antioxidant and biological properties of the carotenoids. Ann. NY Acad. Sci. 1998, 854, 443–447. [Google Scholar] [CrossRef]
- Edge, R.; McGarvey, D.J.; Truscott, T.G. The carotenoids as antioxidants—A review. J. Photochem. Photobiol. B Biol. 1997, 41, 189–200. [Google Scholar] [CrossRef]
- Andersen, O.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry, and Applications; CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids Handbook; Birkhäuser: Basel, Swizerland, 2004. [Google Scholar]
- El-Agamey, A.; McGarvey, D.J. Evidence for a lack of reactivity of carotenoid addition radicals towards oxygen: A laser flash photolysis study of the reactions of carotenoids with acylperoxyl radicals in polar and non-polar solvents. J. Am. Chem. Soc. 2003, 125, 3330–3340. [Google Scholar] [CrossRef]
- Mortensen, A.; Skibsted, L.H. Relative stability of carotenoid radical cations and homologue tocopheroxyl radicals: A real time kinetic study of antioxidant hierarchy. FEBS Lett. 1997, 417, 261–266. [Google Scholar] [CrossRef]
- Edge, R.; Land, E.J.; McGarvey, D.; Mulroy, L.; Truscott, T.G. Relative one-electron reduction potentials of carotenoid radical cations and the interactions of carotenoids with the vitamin E radical cation. J. Am. Chem. Soc. 1998, 120, 4087–4090. [Google Scholar] [CrossRef]
- Han, R.-M.; Chen, C.-H.; Tian, Y.-X.; Zhang, J.-P.; Skibsted, L.H. Fast regeneration of carotenoids from radical cations by isoflavonoid dianions: Importance of the carotenoid keto group for electron transfer. J. Phys. Chem. A 2010, 114, 126–132. [Google Scholar]
- Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as antioxidants. J. Am. Chem. Soc. 1994, 116, 4846–4851. [Google Scholar]
- Cren-Olivé, C.; Hapiot, P.; Pinson, J.; Rolando, C. Free radical chemistry of flavan-3-ols: Determination of thermodynamic parameters and of kinetic reactivity from short (ns) to long (ms) time scale. J. Am. Chem. Soc. 2002, 124, 14027–14038. [Google Scholar]
- Jovanovic, S.V.; Steenken, S.; Hara, Y.; Simic, M.G. Which ring in flavonoids is responsible for antioxidant activity? J. Chem. Soc. Perkin Trans. 2 1996, 2497–2504. [Google Scholar]
- Nakanishi, I.; Miyazaki, K.; Shimada, T.; Ohkubo, K.; Urano, S.; Ikota, N.; Ozawa, T.; Fukuzumi, S.; Fukuhara, K. Effects of metal ions distinguishing between one-step hydrogen- and electron-transfer mechanisms for the radical-scavenging reaction of (+)-catechin. J. Phys. Chem. A 2002, 106, 11123–11126. [Google Scholar] [CrossRef]
- Tian, Y.-X.; Han, R.-M.; Fu, L.-M.; Zhang, J.-P.; Skibsted, L.H. Radical dynamics of puerarin as revealed by laser flash photolysis and spin density analysis. J. Phys. Chem. B 2008, 112, 2273–2280. [Google Scholar]
- Rüfer, C.E.; Kulling, S.E. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agric. Food Chem. 2006, 54, 2926–2931. [Google Scholar] [CrossRef]
- Jovanovic, S.V.; Hara, Y.; Steenken, S.; Simic, M.G. Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. J. Am. Chem. Soc. 1995, 117, 9881–9888. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Han, R.-M.; Tian, Y.-X.; Becker, E.M.; Andersen, M.L.; Zhang, J.-P.; Skibsted, L.H. Puerarin and conjugate bases as radical scavengers and antioxidants: Molecular mechanism and synergism with β-carotene. J. Agric. Food Chem. 2007, 55, 2384–2391. [Google Scholar] [CrossRef]
- Liang, J.; Tian, Y.-X.; Fu, L.-M.; Wang, T.-H.; Li, H.-J.; Wang, P.; Han, R.-M.; Zhang, J.-P.; Skibsted, L.H. Daidzein as an antioxidant of lipid: Effects of the microenvironment in relation to chemical structure. J. Agric. Food Chem. 2008, 56, 10376–10383. [Google Scholar]
- Han, R.-M.; Tian, Y.-X.; Liu, Y.; Chen, C.-H.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Comparison of flavonoids and isoflavonoids as antioxidants. J. Agric. Food Chem. 2009, 57, 3780–3785. [Google Scholar]
- Velu, C.S.; Munuswamy, N. Composition and nutritional efficacy of adult fairy shrimp streptocephalus dichotomus as live feed. Food Chem. 2007, 100, 1435–1442. [Google Scholar] [CrossRef]
- Mordente, A.; Guantario, B.; Meucci, E.; Silvestrini, A.; Lombardi, E.; Martorana, G.E.; Giardina, B.; Bohm, V. Lycopene and cardiovascular diseases: An update. Curr. Med. Chem. 2011, 18, 1146–1163. [Google Scholar] [CrossRef]
- Maiani, G.; Caston, M.J.P.; Catasta, G.; Toti, E.; Cambrodon, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef]
- Everett, S.A.; Dennis, M.F.; Patel, K.B.; Maddix, S.; Kundu, S.C.; Willson, R.L. Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant β-carotene. J. Biol. Chem. 1996, 271, 3988–3994. [Google Scholar]
- Chen, C.-H.; Han, R.-M.; Liang, R.; Fu, L.-M.; Wang, P.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Direct observation of β-carotene reaction with hydroxyl radical. J. Phys. Chem. B 2011, 115, 2082–3994. [Google Scholar]
- Foss, B.J.; Sliwka, H.-R.; Partali, V.; Cardounel, A.J.; Zweier, J.L.; Lockwood, S.F. Direct superoxide anion scavenging by a highly water-dispersible carotenoid phospholipid evaluated by electron paramagnetic resonance (EPR) spectroscopy. Bioorg. Med. Chem. Lett. 2004, 14, 2807–2812. [Google Scholar] [CrossRef]
- Guo, J.-J.; Hsieh, H.Y.; Hu, C.-H. Chain-breaking activity of carotenes in lipid peroxidation: A theoretical study. J. Phys. Chem. B 2009, 113, 15699–15708. [Google Scholar]
- Galano, A.; Vargas, R.; Martínez, A. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys. Chem. Chem. Phys. 2010, 12, 193–200. [Google Scholar]
- Opstad, C.L.; Sliwka, H.-R.; Partali, V. Facile electron uptake by carotenoids under mild, non-radiative conditions: Formation of carotenoid anions. Eur. J. Org. Chem. 2010, 2010, 4637–4641. [Google Scholar] [CrossRef]
- Edge, R.; El-Agamey, A.; Land, E.J.; Navaratnam, S.; Truscott, T.G. Studies of carotenoid one-electron reduction radicals. Arch. Biochem. Biophys. 2007, 458, 104–110. [Google Scholar] [CrossRef]
- Tian, Y.-X.; Han, R.-M.; Zhang, J.-P.; Skibsted, L.H. Effect of polar solvents on β-carotene radical precursor. Free Radic. Res. 2008, 42, 281–286. [Google Scholar] [CrossRef]
- El-Agamey, A.; McGarvey, D.J. First direct observation of reversible oxygen addition to a carotenoid-derived carbon-centered neutral radical. Org. Lett. 2005, 7, 3957–3960. [Google Scholar] [CrossRef]
- Konovalova, T.A.; Kispert, L.D.; Konovalov, V.V. Photoinduced electron transfer between carotenoids and solvent molecules. J. Phys. Chem. B 1997, 101, 7858–7862. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Fujii, R.; Koyama, Y.; Rondonuwu, F.S.; Watanabe, Y.; Mortensen, A.; Skibsted, L.H. The 1Bu-type singlet state of β-carotene as a precursor of the radical cation found in chloroform solution by sub-picosecond time-resolved absorption spectroscopy. Chem. Phys. Lett. 2001, 348, 235–241. [Google Scholar] [CrossRef]
- Han, R.-M.; Wu, Y.-S.; Feng, J.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Radical cation generation from singlet and triplet excited states of all-trans-lycopene in chloroform. Photochem. Photobiol. 2004, 80, 326–333. [Google Scholar] [CrossRef]
- Han, R.-M.; Tian, Y.-X.; Wu, Y.-S.; Wang, P.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Mechanism of radical cation formation from the excited states of zeaxanthin and astaxanthin in chloroform. Photochem. Photobiol. 2006, 82, 538–546. [Google Scholar] [CrossRef]
- Yang, F.; Wang, T.-H.; Wang, P.; Han, R.-M.; Ai, X.-C.; Zhang, J.-P. Mechanism of Photoinduced formation fucoxanthin radical cation in organic solvents. Chem. J. Chin. Univ. 2010, 31, 2463–2467. [Google Scholar]
- Mortensen, A.; Skibsted, L.H. Importance of carotenoid structure in radical-scavenging reactions. J. Agric. Food Chem. 1997, 45, 2970–2977. [Google Scholar] [CrossRef]
- Gabrielska, J.; Gruszecki, W.I. Zeaxanthin (dihydroxy-β-carotene) but not β-carotene rigidifies lipid membranes: A 1H-NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim. Biophys. Acta 1996, 1285, 167–174. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. [Google Scholar] [CrossRef]
- Focsan, A.L.; Molnár, P.; Deli, J.; Kispert, L.D. Structure and properties of 9′-cis neoxanthin carotenoid radicals by electron paramagnetic resonance measurements and density functional theory calculations: Present in LHC II? J. Phys. Chem. B 2009, 113, 6087–6096. [Google Scholar] [CrossRef]
- Focsan, A.L.; Bowman, M.K.; Konovalova, T.A.; Molnár, P.; Deli, J.; Dixon, D.A.; Kispert, L.D. Pulsed EPR and DFT characterization of radicals produced by photo-oxidation of zeaxanthin and violaxanthin on silica-alumina. J. Phys. Chem. B 2008, 112, 1806–1819. [Google Scholar]
- Polyakov, N.E.; Focsan, A.L.; Bowman, M.K.; Kispert, L.D. Free radical formation in novel carotenoid metal ion complexes of astaxanthin. J. Phys. Chem. B 2010, 114, 16968–16977. [Google Scholar] [CrossRef]
- Focsan, A.L.; Bowman, M.K.; Molnár, P.; Deli, J.; Kispert, L.D. Carotenoid radical formation: Dependence on conjugation length. J. Phys. Chem. B 2011, 115, 9495–9506. [Google Scholar] [CrossRef]
- El-Agamey, A.; Cantrell, A.; Land, E.J.; McGarvey, D.J.; Truscott, T.G. Are dietary carotenoids beneficial? Reactions of carotenoids with oxy-radicals and singlet oxygen. Photochem. Photobiol. Sci. 2004, 3, 802–811. [Google Scholar] [CrossRef]
- Burke, M.; Edge, R.; Land, E.J.; Truscott, T.G. Characterisation of carotenoid radical cations in liposomal environments: Interaction with vitamin C. J. Photochem. Photobiol. B 2001, 60, 1–6. [Google Scholar] [CrossRef]
- El-Agamey, A.; Edge, R.; Navaratnam, S.; Land, E.J.; Truscott, T.G. Carotenoid radical anions and their protonated derivatives. Org. Lett. 2006, 8, 4255–4258. [Google Scholar] [CrossRef]
- Han, R.-M.; Li, D.-D.; Chen, C.-H.; Liang, R.; Tian, Y.-X.; Zhang, J.-P.; Skibsted, L.H. Phenol acidity and ease of oxidation in isoflavonoid/β-carotene antioxidant synergism. J. Agric. Food Chem. 2011, 59, 10367–10372. [Google Scholar]
- Liang, R.; Han, R.-M.; Fu, L.-M.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Baicalin in radical scavenging and its synergistic effect with β-carotene in antilipoxidation. J. Agric. Food Chem. 2009, 57, 7118–7124. [Google Scholar] [CrossRef]
- Liang, R.; Chen, C.-H.; Han, R.-M.; Zhang, J.-P.; Skibsted, L.H. Thermodynamic versus kinetic control of antioxidant synergism between β-carotene and (iso)flavonoids and their glycosides in liposomes. J. Agric. Food Chem. 2010, 58, 9221–9227. [Google Scholar] [CrossRef]
- An, C.-B.; Li, D.; Liang, R.; Bu, Y.-Z.; Wang, S.; Zhang, E.-H.; Wang, P.; Ai, X.-C.; Zhang, J.-P.; Skibsted, L.H. Chain length effects in isoflavonoid daidzein alkoxy derivatives as antioxidants: A quantum mechanical approach. J. Agric. Food Chem. 2011, 59, 12652–12657. [Google Scholar]
- An, C.-B.; Liang, R.; Ma, X.-H.; Fu, L.-M.; Zhang, J.-P.; Wang, P.; Han, R.-M.; Ai, X.-C.; Skibsted, L.H. Retinylisoflavonoid as a novel membrane antioxidant. J. Phys. Chem. B 2010, 114, 13904–13910. [Google Scholar]
- Beutner, S.; Frixel, S.; Ernst, H.; Hoffmann, T.; Hernandez-Blanco, I.; Hundsdoerfer, C.; Kiesendahl, N.; Kock, S.; Martin, H.-D.; Mayer, B.; Noack, P.; Perez-Galvez, A.; Kock, G.; Scherrers, R.; Schrader, W.; Sell, S.; Stahl, W. Carotenylflavonoids, a novel group of potent, dual-functional antioxidants. ARKIVOC 2007, viii, 279–295. [Google Scholar]
- Song, L.-L.; Liang, R.; Li, D.-D.; Xing, Y.-D.; Han, R.-M.; Zhang, J.-P.; Skibsted, L.H. β-Carotene radical cation addition to green tea polyphenols. Mechanism of antioxidant antagonism in peroxidizing liposomes. J. Agric. Food Chem. 2011, 59, 12643–12651. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Han, R.-M.; Zhang, J.-P.; Skibsted, L.H. Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules 2012, 17, 2140-2160. https://doi.org/10.3390/molecules17022140
Han R-M, Zhang J-P, Skibsted LH. Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules. 2012; 17(2):2140-2160. https://doi.org/10.3390/molecules17022140
Chicago/Turabian StyleHan, Rui-Min, Jian-Ping Zhang, and Leif H. Skibsted. 2012. "Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants" Molecules 17, no. 2: 2140-2160. https://doi.org/10.3390/molecules17022140
APA StyleHan, R. -M., Zhang, J. -P., & Skibsted, L. H. (2012). Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules, 17(2), 2140-2160. https://doi.org/10.3390/molecules17022140