Tropical Plant Extracts as Potential Antihyperglycemic Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antihyperglycemic and Antioxidant Ability of Tropical Plant Extracts
Scientific Name | Parts | Local Name | Family |
---|---|---|---|
Azadirachta indica | Leaf | Neem | Meliaceae |
Artocarpus champeden | Leaf | Cempedak | Moraceae |
Garcinia mangostana | Rind | Mangosteen | Clusiaceae |
Nephelium lappaceum | Rind and leaf | Rambutan | Sapindaceae |
Peltophorum pterocarpum | Leaf, bark, pod and flower | Yellow flame tree | Fabaceae |
Syzygium aqueum | Leaf | Water jambu, water apple | Myrtaceae |
Syzygium cumini | Leaf, bark and seed | Java plum, jambolana | Myrtaceae |
Vitis vinifera | Seed | Grape | Vitaceae |
Plant Extracts | Part | Ethanol | ||||
---|---|---|---|---|---|---|
1/EC50 (mg/mL) | TPC,GAE (mg/g) | % Yield of Extraction | ||||
α-Glucosidase | α-Amylase | DPPH | ||||
Azadirachta indica | Leaf | 39.8 ± 13.2 | 2.7 ± 0.9 | 1.2 ± 0.2 | 53.6 ± 12.5 | 14.4 ± 13.2 |
Artocarpus champeden | Leaf | 91.7 ± 10.4 | ND * | 7.1 ± 1.1 | 556.2 ± 28.2 | 27.8 ± 9.6 |
Garcinia mangostana | Rind | 200.0 ± 28.2 | 41.7 ± 3.2 | 11.9 ± 4.1 | 600.0 ± 34.9 | 22.0 ± 7.5 |
Nephelium lappaceum | Rind | 370.4 ± 31.6 | 14.1 ± 8.5 | 15.7 ± 5.3 | 809.6 ± 53.2 | 33.2 ± 16.3 |
Nephelium lappaceum | Leaf | 400.0 ± 45.7 | 31.2 ± 9.4 | 8.8 ± 1.2 | 321.0 ± 21.5 | 18.8 ± 7.3 |
Peltophorum pterocarpum | Leaf | 292.3 ± 17.5 | 65.4 ±10.1 | 5.7 ± 13.2 | 256.2 ± 35.7 | 15.4 ± 2.4 |
Peltophorum pterocarpum | Bark | 1,666.7 ± 596.4 | 400.0 ± 43.2 | 32.1 ± 18.6 | 797.6 ± 383.2 | 20.0 ± 11.2 |
Peltophorum pterocarpum | Pod | 1,111.1 ± 857.3 | 49.3 ± 21.9 | 12.6 ± 10.2 | 372.6 ± 193.7 | 15.8 ± 7.5 |
Peltophorum pterocarpum | Flower | 2,500.0 ± 966.8 | 123.5 ± 93.2 | 20.1 ± 17.3 | 594.0 ± 213.1 | 17.6 ± 12.4 |
Syzygium aqueum | Leaf | 344.8 ± 175.3 | 23.6 ± 13.2 | 8.4 ± 5.6 | 265.4 ± 178.9 | 14.0 ± 12.5 |
Syzygium cumini | Leaf | 769.2 ± 323.7 | 45.9 ± 28.2 | 10.9 ± 1.2 | 371.0 ± 197.6 | 1.0 ± 0.5 |
Syzygium cumini | Bark | 400.0 ± 245.8 | 21.0 ± 17.3 | 6.6 ± 3.8 | 303.4 ± 153.8 | 2.8 ± 1.6 |
Syzygium cumini | Seed | 625.0 ± 254.7 | 9.2 ± 75.8 | 9.1 ± 8.2 | 375.4 ± 268.1 | 8.0 ± 5.7 |
Vitis vinifera (Grape) | Seed | 357.1 ±265.9 | 227.3 ± 145.9 | 34.8 ± 29.1 | 834.8 ± 475.5 | 2.6 ± 1.2 |
Acarbose | 0.286 ± 0.08 | 83.3 ± 25.9 |
Plant Extracts | Part | Aqueous | ||||
---|---|---|---|---|---|---|
1/EC50 (mg/mL) | TPC GAE(mg/g) | % Yield of Extraction | ||||
α-Glucosidase | α-Amylase | DPPH | ||||
Azadirachta indica | Leaf | 3.8 ± 1.2 | ND | ND | 80.3 ± 34.5 | 19.0 ± 8.2 |
Artocarpus champeden | Leaf | 44.8 ± 21.3 | 80.0 ± 27.8 | 7.6 ± 1.6 | 526.6 ± 115.7 | 9.4 ± 3.1 |
Garcinia mangostana | Rind | 196.1 ± 65.5 | ND | 5.0 ± 1.5 | 282.2 ± 111.2 | 13.8 ± 7.2 |
Nephelium lappaceum | Rind | 333.3 ± 192.5 | ND | 11.0 ± 8.2 | 460.6 ± 271.4 | 23.4 ± 15.7 |
Nephelium lappaceum | Leaf | 322.6 ± 1.2 | ND | 6.3 ± 4.2 | 261.2 ± 91.7 | 9.2 ± 5.3 |
Peltophorum pterocarpum | Leaf | 1,666.7 ± 986.1 | 55.9 ± 22.3 | 6.9 ± 1.7 | 333.2 ± 121.0 | 10.0 ± 4.3 |
Peltophorum pterocarpum | Bark | 344.8 ± 226.4 | 370.4 ± 232.8 | 7.7 ± 2.5 | 306.8 ± 113.5 | 0.6 ± 0.04 |
Peltophorum pterocarpum | Pod | ND * | ND | ND | 62.5 ± 10.1 | 1.4 ± 0.9 |
Peltophorum pterocarpum | Flower | 434.8 ± 178.2 | ND | 6.7 ± 2.3 | 273.6 ± 173.1 | 10.2 ± 8.4 |
Syzygium aqueum | Leaf | 370.4 ± 199.5 | 5.5 ± 2.8 | 3.4 ± 1.4 | 207.2 ± 96.5 | 4.8 ± 1.7 |
Syzygium cumini | Leaf | 232.6 ± 191.3 | ND | 9.6 ± 2.5 | 301.6 ± 287.2 | 11.6 ± 9.7 |
Syzygium cumini | Bark | 32.6 ± 11.1 | ND | 1.2 ± 0.5 | 152.7 ± 35.6 | |
Syzygium cumini | Seed | 93.5 ± 23.5 | ND | 6.4 ± 1.9 | 267.4 ± 115.3 | |
Vitis vinifera (Grape) | Seed | 256.4 ± 118.9 | ND | 2.9 ± 0.7 | 371.0 ± 224.5 | |
Acarbose | 0.286 ± 0.03 | 83.3 ± 24.5 |
2.2. Correlation between Total Phenolic Content, Antioxidant and Antihyperglycemic Activity
2.3. Tannins Interference in Antihyperglycemic Activity
3. Experimental
3.1. Plant Collection and Extraction
3.2. α-Glucosidase and α-Amylase Inhibition Assays
3.3. Antioxidant Assay (DPPH Scavenging Activity)
3.4. Determination of Total Phenolic Content (TPC)
3.5. Precipitation of Tannins by Hide Powder
4. Conclusions
Acknowledgements
References and Notes
- Cheplick, S.; Kwon, Y.I.; Bhowmik, P.; Shetty, K. Phenolic linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Bioresour. Technol. 2010, 101, 404–413. [Google Scholar] [CrossRef]
- Manaharan, T.; Ling, L.T.; Appleton, D.; Cheng, H.M.; Masilamani, T.; Palanisamy, U. Antioxidant and antihyperglycemic potential of Peltophorum pterocarpum plant parts. Food Chem. 2011, 129, 1355–1361. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maiti, K.; Mukherjee, K.; Houghton, P.J. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol. 2006, 106, 1–28. [Google Scholar] [CrossRef]
- Ali, H.; Houghton, P.J.; Soumyanath, A. Alpha-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 2006, 107, 449–455. [Google Scholar] [CrossRef]
- Saha, S.; Verma, R. Inhibitory potential of traditional herbs on α-amylase activity. Pharm. Biol. 2012, 50, 326–331. [Google Scholar] [CrossRef]
- Gowri, P.M.; Tiwari, A.K.; Ali, A.Z.; Rao, J.M. Inhibition of alpha-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. Seeds. Phytother. Res. 2007, 21, 796–799. [Google Scholar] [CrossRef]
- Funke, I.; Melzig, M.F. Effect of different phenolic compounds on alpha-amylase activity: Screening by microplate-reader based kinetic assay. Pharmazie 2005, 60, 796–797. [Google Scholar]
- Kumar, A.; Illavarasan, R.; Jayachandran, T.; Decaraman, M.; Aravindan, P.; Padmanabhan, N.; Krishan, M.R.V. Antidiabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. J. Med. Plants Res. 2008, 2, 246–249. [Google Scholar]
- Helmstadter, A. Syzygium cumini (L.) skeels (Mrytaceae) against diabetes-125 years of research. Pharmazie 2008, 63, 91–101. [Google Scholar]
- Karthic, K.; Kirthiram, K.S.; Sadasivam, S.; Thayumanavan, B. Identification of alpha amylase inhibitors from Syzygium cumini Linn seeds. Indian J. Exp. Biol. 2008, 46, 677–680. [Google Scholar]
- Wong, L.P.; Klemmer, P.J. Severe lactic acidosis associated with juice of the mangosteen fruit Garcinia mangostana. Am. J. Kidney Dis. 2008, 51, 829–833. [Google Scholar] [CrossRef]
- Gao, X.; Bjork, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Ling, L.T.; Yap, S.A.; Radhakrishnan, A.K.; Subramaniam, T.; Cheng, H.M.; Palanisamy, U.D. Standardised Mangifera indica extract is an ideal antioxidant. Food Chem. 2009, 113, 1154–1159. [Google Scholar] [CrossRef]
- Ling, L.T.; Radhakrishnan, A.K.; Subramaniam, T.; Cheng, H.M.; Palanisamy, U.D. Assessment of antioxidant capacity and cytotoxicity of selected Malaysian plants. Molecules 2010, 15, 2139–2151. [Google Scholar] [CrossRef]
- Silva Pinto, M.D.; Kwon, Y.I.; Apostolidis, E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Potential of Gingko biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Bioresour. Technol. 2009, 100, 6599–6609. [Google Scholar] [CrossRef]
- Liu, J.P.; Zhang, M.; Wang, W.Y.; Grinsgard, S. Chinese herbal medicines for type-2-diabetes mellitus. J. Ethnopharmacol. 2004, 115, 173–183. [Google Scholar]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ann, H.J.; Lee, M.Y. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay guided comparison. Plant Sci. 2002, 63, 1161–1168. [Google Scholar]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2005, 85, 231–237. [Google Scholar]
- Mekhfi, H.; Elhaouari, M.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Legssyer, A. Effects of extracts and tannins from Arbutus unedo leaves on rat platelet aggregation. Phytother. Res. 2006, 20, 135–139. [Google Scholar] [CrossRef]
- Sample Availability: Samples are available from the authors T. Manaharan and U. Devi Palanisamy.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Manaharan, T.; Palanisamy, U.D.; Ming, C.H. Tropical Plant Extracts as Potential Antihyperglycemic Agents. Molecules 2012, 17, 5915-5923. https://doi.org/10.3390/molecules17055915
Manaharan T, Palanisamy UD, Ming CH. Tropical Plant Extracts as Potential Antihyperglycemic Agents. Molecules. 2012; 17(5):5915-5923. https://doi.org/10.3390/molecules17055915
Chicago/Turabian StyleManaharan, Thamilvaani, Uma Devi Palanisamy, and Cheng Hwee Ming. 2012. "Tropical Plant Extracts as Potential Antihyperglycemic Agents" Molecules 17, no. 5: 5915-5923. https://doi.org/10.3390/molecules17055915
APA StyleManaharan, T., Palanisamy, U. D., & Ming, C. H. (2012). Tropical Plant Extracts as Potential Antihyperglycemic Agents. Molecules, 17(5), 5915-5923. https://doi.org/10.3390/molecules17055915