Modifications on the Basic Skeletons of Vinblastine and Vincristine
Abstract
:1. Introduction
2. Modification of Vinblastine
3. Changes in the Structure of Vincristine
4. Modifications on the Catharanthine Skeleton
5. Derivatizations of Vindoline
6. Coupling Reactions
7. Conclusions
Acknowledgements
References
- Brossi, A.; Suffness, M. Antitumor Bisindol Alkaloids from Catharanthus Roseus (L.). In The Alkaloids; Academic Press Inc.: New York, NY, USA, 1990; Volume 37, pp. 1–240. [Google Scholar]
- Bölcskei, H.; Szabó, L.; Szántay, C. Synthesis of vinblastine derivatives. Front. Nat. Prod. Chem. 2005, 1, 43–49. [Google Scholar] [CrossRef]
- Eli Lilly Company, Neue Aminderivate von Vinblastin, Leurosidin und Leurocristin und Verfahren zu ihrer Herstellung. DE Patent 22415980, 1974. [Chem. Abstr. 1974, 82, 579967b].
- Barnett, C.J.; Cullinan, G.J.; Gerzon, K.; Hoying, R.C.; Jones, W.E.; Newlon, W.M.; Poore, G.A.; Robison, R.L.; Sweeney, M.J.; Todd, G.C. Structure-activity relationships of dimeric Catharanthus alkaloids. 1. Deacetylvinblastine amide (vindesine) sulfate. J. Med. Chem. 1978, 21, 88–96. [Google Scholar]
- Thimmaiah, K.N.; Lloyd, W.D.; Sethi, V.S. A simple method for the chemical modification of antitumor Catharanthus Vinca alkaloids. Ind. J. Chem. Sect. B: Org. Chem. Med. Chem. 1990, 29, 678–680. [Google Scholar]
- Brady, S.F.; Pawluczyk, J.M.; Lumma, P.K.; Feng, D.-M.; Wai, J.M.; Jones, R.; DeFeo-Jones, D.; Wong, B.K.; Miller-Stein, C.; Lin, J.H.; et al. Design and synthesis of a pro-drug of vinblastine targeted at treatment of prostate cancer with enhanced efficacy and reduced systemic toxicity. J. Med. Chem. 2002, 45, 4706–4715. [Google Scholar] [CrossRef]
- Scott, I.L.; Ralph, J.M.; Voss, M.E. Vinca derivatives. WO Patent 2005/55939, 2005. [Google Scholar]
- Voss, M.E.; Ralph, J.M.; Xie, D.; Manning, D.D.; Chen, X.; Frank, A.J.; Leyhane, A.J.; Liu, L.; Stevens, J.M.; Budde, C.; et al. Synthesis and SAR of Vinca alkaloid analogues. Bioorg. Med. Chem. Lett. 2009, 19, 1245–1249. [Google Scholar]
- Lafitte, C.; Jouannetaud, M.-P.; Jacquesy, J.-C.; Fahy, J.; Duflos, A. Stereoselective ionic hydrogenation of Vinca alkaloids and vinorelbine in Superacids: An access to 4′R-reduced analogs. Tetrahedron Lett. 1998, 39, 8281–8282. [Google Scholar]
- Fahy, J.; Duflos, A.; Ribet, J.-P.; Jacquesy, J.-C.; Berrier, C.; Jouannetaud, M.-P.; Zunino, F. Vinca alkaloids in superacid media: A method for creating a new family of antitumor derivatives. J. Am. Chem. Soc. 1997, 119, 8576–8577. [Google Scholar] [CrossRef]
- Bölcskei, H.; Szántay, C.Jr.; Mák, M.; Balázs, M.; Szántay, C. New antitumor derivatives of vinblastine (in Hungarian). Acta Pharm. Hung. 1998, 68, 87–93. [Google Scholar]
- Szabó, L.; Bölcskei, H.; Baitz-Gács, E.; Mák, M.; Szántay, C. Synthesis of Vinca alkaloids and related compounds, part XCVI. Nitration study of vinblastine-type bisindole alkaloids. Arch. Pharm. (Weinheim, Germany) 2001, 334, 399–405. [Google Scholar]
- Szabó, L.; Szántay, C.; Gács-Baitz, E.; Mák, M. Synthesis of Vinca alkaloids and related compounds. LXXVIII. A potentionally biologically useful reduction of nitro-vincristine. Tetrahedron Lett. 1995, 36, 5265–5266. [Google Scholar]
- Rao, K.S.P.B.; Collard, M.-P.M.; Dejonghe, J.P.C.; Atassi, G.; Hannart, J.A.; Trouet, A. Vinblastin-23-oyl amino acid derivatives: Chemistry, physicochemical data, toxicity, and antitumor activities against P388 and L1210 leukemias. J. Med. Chem. 1985, 28, 1079–1088. [Google Scholar] [CrossRef]
- Hendriks, H.R.; Langdon, S.; Berger, D.P.; Breistol, K.; Fiebig, H.H.; Fodstad, O.; Schwartsmann, G. Comparative antitumour activity of vinblastine-isoleucinate and related vinca alkaloids in human tumour xenografts. Eur. J. Cancer 1992, 28, 767–773. [Google Scholar] [CrossRef]
- Bánóczi, Z.; Gorka-Kereskényi, Á.; Reményi, J.; Orbán, E.; Hazai, L.; Tőkési, N.; Oláh, J.; Ovádi, J.; Béni, Z.; Háda, V.; et al. Synthesis and in vitro antitumor effect of vinblastine derivative-oligoarginine conjugates. Bioconjug. Chem. 2010, 21, 1948–1955. [Google Scholar]
- Ngo, Q.A.; Roussi, F.; Cormier, A.; Thoret, S.; Knossow, M.; Guénard, D.; Guéritte, F. Synthesis and biological evaluation of Vinca alkaloids and phomopsin hybrids. J. Med. Chem. 2009, 52, 134–142. [Google Scholar] [CrossRef]
- Trédaniel, J.; Staudacher, L.; Teixeira, L.; Sebbagh, S.; Bucquet, S.; Hennequin, C. Pharmacotherapy update: Vinorelbine in the treatment non-small-cell lung cancer. Clin. Med. Insights: Ther. 2010, 2, 179–188. [Google Scholar]
- Passrella, D.; Giardini, A.; Peretto, B.; Fontana, G.; Sacchetti, A.; Silvani, A.; Ronchi, C.; Cappalletti, G.; Cartelli, D.; Borlak, J.; et al. Inhibitors of tubulin polymerization: Synthesis and biological evaluation of hybrids of vindoline, anhydrovinblastine and vinorelbine with thiocolchicine, podophyllotoxin and baccatin III. Bioorg. Med. Chem. 2008, 16, 6269–6285. [Google Scholar] [CrossRef]
- Vlahov, I.R.; Santhapuram, H.K.R.; Kleindl, P.J.; Howard, S.J.; Stanford, K.M.; Leamon, C.P. Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1: EC145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorg. Med. Chem. Lett. 2006, 16, 5093–5096. [Google Scholar]
- Kuehne, M.E.; Bornmann, W.G.; Markó, I.; Qin, Y.; LeBoulluec, K.L.; Frasier, D.A.; Xu, F.; Mulamba, T.; Ensinger, C.L.; Borman, L.S.; et al. Synthesis and biological evaluation of vinblastine congeners. Org. Biomol. Chem. 2003, 1, 2120–2136. [Google Scholar] [CrossRef]
- Honty, K.; Demeter, Á.; Szántay, C.Jr.; Hollósi, M.; Kolonits, P.; Szántay, C. Synthesis of Vinca alkaloids and related compounds. Part XCIII. Skeletal rearrangement of cyclovinblastine derivatives: Formation of a novel bisindole system. Heterocycles 1995, 50, 169–194. [Google Scholar]
- Kutney, J.P.; Balsevich, J.; Worth, B.R. Studies on the synthesis of bisindole alkaloids. XV. A synthesis of vinamidine (catharinine). Heterocycles 1978, 11, 69–73. [Google Scholar]
- Bornmann, W.G.; Kuehne, M.E. A common intermediate providing syntheses of Ψ-tabersonine, coronaridine, iboxyphylline, ibophyllidine, vinamidine, and vinblastine. J. Org. Chem. 1992, 57, 1752–1760. [Google Scholar] [CrossRef]
- Orosz, F.; Comin, B.; Rais, B.; Puigjaner, J.; Cascante, M.; Kovács, J.; Tárkányi, G.; Ács, T.; Keve, T.; Ovádi, J. New bis-indol derivatives: Chemical, biochemical and cellular studies. Br. J. Cancer 1999, 79, 1356–1365. [Google Scholar] [CrossRef]
- Bölcskei, H.; Szántay, C.Jr.; Mák, M.; Balázs, M.; Szántay, C. New antitumor hydroxymethyl derivatives of vinblastine. J. Indian Chem. Soc. 1997, 74, 904–907. [Google Scholar]
- Szántay, C. Indole alkaloids in human medicine. Pure Appl. Chem. 1990, 62, 1299–1302. [Google Scholar] [CrossRef]
- Ahn, S.H.; Duffel, M.W.; Rosazza, J.P.N. Oxidations of vincristine catalyzed by peroxidase and ceruloplasmin. J. Nat. Prod. 1997, 60, 1125–1129. [Google Scholar] [CrossRef]
- Moisan, L.; Comesse, S.; Giovanelli, E.; Rousseau, B.; Doris, E.; Hellier, P. Fluorinated catharanthine derivatives, their preparation and their utilisation as Vinca dimeric alkaloid precursors. WO Patent 2008/034882, 82 2008. [Google Scholar]
- Kruczynski, A.; Barret, J.-M.; Etiévant, C.; Colpaert, F.; Fahy, J.; Hill, B.T. Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated Vinca alkaloid. Biochem. Pharmacol. 1998, 55, 635–648. [Google Scholar] [CrossRef]
- Krzakowski, M.; Ramlau, R.; Jassem, J.; Szczesna, A.; Zatloukal, P.; Von Pawel, J.; Sun, X.; Bennoung, J.; Santoro, A.; Biesma, B.; et al. Phase III trial comparing vinflunine with docetaxel in second-line advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy. J. Clin. Oncol. 2010, 28, 2167–2173. [Google Scholar]
- Fahy, J.; Duflos, A.; Ribet, J.-P.; Jacquesy, J.-C.; Berrier, C.; Jouannetaud, M.-P.; Zunino, F. Vinca alkaloids in superacidic media: A method for creating a new family of antitumor derivatives. J. Am. Chem. Soc. 1997, 119, 8576–8577. [Google Scholar] [CrossRef]
- Giovanelli, E.; Leroux, S.; Moisan, L.; Carreyre, H.; Thuéry, P.; Buisson, D.-A.; Meddour, A.; Coustard, J.-M.; Thibaudeau, S.; Rousseau, B.; et al. On the elucidation of the mechanism of Vinca alkaloid fluorination in superacidic medium. Org. Lett. 2011, 13, 4116–4119. [Google Scholar]
- Jacquesy, J.-C.; Berrier, C.; Jouannetaud, M.-P.; Zunino, F.; Fahy, J.; Duflos, A.; Ribet, J.-P. Fluorination in superacids: A novel access to biologically active compounds. J. Fluorine Chem. 2002, 114, 139–142. [Google Scholar] [CrossRef]
- Andriamialisoa, R.Z.; Langlois, N.; Langlois, Y.; Potier, P. Compesés antitumoraux du groupe de la vinblastine: Nouvelle méthode de préparation. Tetrahedron 1980, 36, 3053–3060. [Google Scholar] [CrossRef]
- Hardouin, C.; Doris, E.; Rousseau, B.; Mioskowski, C. Selective deoxygenation of leurosine: Concise access to anhydrovinblastine. J. Org. Chem. 2002, 67, 6571–6574. [Google Scholar] [CrossRef]
- Potier, P. Synthesis of the antitumor dimeric indole alkaloids from Catharanthus species (vinblastine group). J. Nat. Prod. 1979, 43, 72–86. [Google Scholar] [CrossRef]
- Tam, A.; Gotoh, H.; Robertson, W.M.; Boger, D.L. Catharanthine C16 substituent effects on the biomimetic coupling with vindoline: Preparation and evaluation of a key series of vinblastine analogues. Bioorg. Med. Chem. Lett. 2010, 20, 6408–6410. [Google Scholar] [CrossRef]
- Gotoh, H.; Duncan, K.K.; Robertson, W.M.; Boger, D.L. 10′-Fluorovinblastine and 10′-fluorovincristine: Synthesis of a key series of modified Vinca alkaloids. ACS Med. Chem. Lett. 2011, 2, 948–952. [Google Scholar] [CrossRef]
- Szabó, L.; Hazai, L.; Lengyel, M.; Szántay, C.Jr.; Sánta, Z.; Kalaus, G.; Szántay, C. Aromatic electrophilic substitutions on vindoline. Heterocycles 2007, 71, 1553–1563. [Google Scholar] [CrossRef]
- Kutney, J.P.; Balsevich, J.; Honda, T.; Liao, P.-H.; Thiellier, H.P.M.; Worth, B.R. Total synthesis of indole and dihydroindole alkaloids. XVI. Derivatives of vinblastine and vincristine: Change of functionality in the vindoline unit. Can. J. Chem. 1978, 56, 2560–2566. [Google Scholar]
- Ishikawa, H.; Colby, D.A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T.J.; Hwang, I.; Boger, D.L. Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J. Am. Chem. Soc. 2009, 131, 4904–4916. [Google Scholar]
- Noble, R.L.; Beer, T.; McIntyre, R.W. Biological effects of dihydroviblastine. Cancer 1967, 20, 885–890. [Google Scholar] [CrossRef]
- Shao, Y.; Ding, H.; Tang, W.; Lou, L.; Hu, L. Synthesis and structure-activity relationships study of novel anti-tumor carbamate anhydrovinblastine analogues. Bioorg. Med. Chem. 2007, 15, 5061–5075. [Google Scholar] [CrossRef]
- Song, W.; Lei, M.; Zhao, K.; Hu, L.; Meng, Y.; Guo, D.; Liu, X.; Hu, L. Ceric ammonium nitrate-promoted oxidative coupling reaction for the synthesis and evaluation of a series of anti-tumor amide anhydrovinblastine analogs. Bioorg. Med. Chem. Lett. 2012, 22, 387–390. [Google Scholar] [CrossRef]
- Va, P.; Campbell, E.L.; Robertson, W.M.; Boger, D.L. Total synthesis and evaluation of a key series of C5-substituted vinblastine derivatives. J. Am. Chem. Soc. 2010, 132, 8489–8495. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kato, D.; Boger, L. Asymmetric total synthesis of vindorosine, vindoline, and key vinblastine analogues. J. Am. Chem. Soc. 2010, 132, 13533–13544. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Keglevich, P.; Hazai, L.; Kalaus, G.; Szántay, C. Modifications on the Basic Skeletons of Vinblastine and Vincristine. Molecules 2012, 17, 5893-5914. https://doi.org/10.3390/molecules17055893
Keglevich P, Hazai L, Kalaus G, Szántay C. Modifications on the Basic Skeletons of Vinblastine and Vincristine. Molecules. 2012; 17(5):5893-5914. https://doi.org/10.3390/molecules17055893
Chicago/Turabian StyleKeglevich, Péter, László Hazai, György Kalaus, and Csaba Szántay. 2012. "Modifications on the Basic Skeletons of Vinblastine and Vincristine" Molecules 17, no. 5: 5893-5914. https://doi.org/10.3390/molecules17055893
APA StyleKeglevich, P., Hazai, L., Kalaus, G., & Szántay, C. (2012). Modifications on the Basic Skeletons of Vinblastine and Vincristine. Molecules, 17(5), 5893-5914. https://doi.org/10.3390/molecules17055893