Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
Tested strain n° URM | Compounds (MICs in μg·mL−1) a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4a | 4b | 4c | 4d | 4e | 4f | 4g | 4h | 4i | 4j | Flu b | |
4990 | 2,048 | 1,024 | 256 | 2,048 | 1,024 | 2,048 | R | R | R | R | >64 |
4987 | 2,048 | 1,024 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 16 |
4986 | 2,048 | 1,024 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 16 |
4820 | 2,048 | 1,024 | 256 | 2,048 | 1,024 | 2,048 | R | R | R | R | 4 |
4819 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 4 |
4817 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 4 |
4609 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 4 |
4606 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 2 |
4388 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | >64 |
4387 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 2 |
4386 | 2,048 | 1,024 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 1 |
4385 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 2 |
4384 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 2 |
4260 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 2 |
4127 | R | 1,024 | 128 | 1,024 | 2,048 | 2,048 | R | R | R | R | 0.5 |
4126 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 0.5 |
4125 | 2,048 | 1,024 | 256 | 1,024 | 1,024 | 2,048 | R | R | R | R | 0.5 |
4124 | 2,048 | 1,024 | 256 | 2,048 | 1,024 | 2,048 | R | R | R | R | >64 |
3719 | R | 1,024 | 256 | 2,048 | 1,024 | 2,048 | R | R | R | R | 64 |
3716 | R | 1,024 | 256 | 2,048 | 1,024 | 2,048 | R | R | R | R | 0.5 |
4802 | 2,048 | 2,048 | 256 | 2,048 | 1,024 | R | R | R | R | R | 64 |
4263 | 2,048 | 2,048 | 256 | 2,048 | 1,024 | R | R | R | R | R | 64 |
1059 | 2,048 | 1,024 | 64 | 512 | 1,024 | 2,048 | R | R | R | R | 16 |
934 | 2,048 | 2,048 | 256 | 2,048 | 1,024 | R | R | R | R | R | 64 |
109 | 2,048 | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 16 |
4984 | R | 2,048 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 16 |
4970 | R | 2,048 | 128 | 1,024 | 512 | 2,048 | R | R | R | R | 16 |
4889 | R | 1,024 | 64 | 1,024 | 1,024 | 2,048 | R | R | R | R | 2 |
4818 | R | 2,048 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 4 |
4804 | R | 2,048 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 8 |
4608 | R | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 16 |
4607 | R | 1,024 | 128 | 1,024 | 1,024 | 2,048 | R | R | R | R | 4 |
4261 | R | 2,048 | 256 | 1,024 | 1,024 | R | R | R | R | R | >64 |
3627 | 2,048 | 1,024 | 64 | 1,024 | 1,024 | 2,048 | R | R | R | R | 0.5 |
3624 | 2,048 | 1,024 | 64 | 1,024 | 1,024 | 2,048 | R | R | R | R | 0.5 |
3621 | 2,048 | 1,024 | 64 | 1,024 | 1,024 | 2,048 | R | R | R | R | 0.5 |
22019 c | R | 2,048 | 256 | 2,048 | 1,024 | 2,048 | R | R | R | R | 8 |
4790 | R | 2,048 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 32 |
4262 | R | 1,024 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 4 |
1150 | R | 2,048 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | >64 |
933 | R | 2,048 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 4 |
916 | R | 2,048 | 128 | 2,048 | 1,024 | 2,048 | R | R | R | R | 4 |
3. Experimental
3.1. General
3.2. Synthesis of the Aromatic Azides 2a–j
3.3. Synthesis of 2-(1-Aryl-1H-1,2,3triazol-4-yl)propan-2-ols 4a–j
3.4. Strains and Growth Cultures
Species | Accession nº (URM) | Storage (years) | Substratum |
---|---|---|---|
C. albicans | 4990 | 01 | Vaginal secretion |
C. albicans | 4987 | 01 | Vaginal secretion |
C. albicans | 4986 | 01 | Vaginal secretion |
C. albicans | 4820 | 02 | Ungual scrap |
C. albicans | 4819 | 02 | Ungual scrap |
C. albicans | 4817 | 02 | Ungual scrap |
C. albicans | 4609 | 03 | Blood |
C. albicans | 4606 | 03 | Blood |
C. albicans | 4388 | 05 | Oropharyngeal secretion |
C. albicans | 4387 | 05 | Oropharyngeal secretion |
C. albicans | 4386 | 05 | Oropharyngeal secretion |
C. albicans | 4385 | 05 | Oropharyngeal secretion |
C. albicans | 4384 | 05 | Oropharyngeal secretion |
C. albicans | 4260 | 05 | Oropharyngeal secretion |
C. albicans | 4127 | 07 | Inguinal area |
C. albicans | 4126 | 07 | Urine |
C. albicans | 4125 | 07 | Spittle |
C. albicans | 4124 | 07 | Oropharyngeal secretion |
C. albicans | 3719 | 10 | Tooth scrap |
C. albicans | 3716 | 10 | Tooth scrap |
C. krusei | 4802 | 02 | * |
C. krusei | 4263 | 05 | Oropharyngeal secretion |
C. krusei | 1059 | 48 | * |
C. krusei | 934 | 49 | Appendix biopsy |
C. krusei | 109 | 52 | * |
C. parapsilosis | 4984 | 01 | Vaginal secretion |
C. parapsilosis | 4970 | 01 | Vaginal secretion |
C. parapsilosis | 4889 | 02 | Blood |
C. parapsilosis | 4818 | 02 | Ungual scrap |
C. parapsilosis | 4804 | 02 | IFM |
C. parapsilosis | 4608 | 03 | Blood |
C. parapsilosis | 4607 | 03 | Blood |
C. parapsilosis | 4261 | 05 | Oropharyngeal secretion |
C. parapsilosis | 3627 | 12 | Spittle |
C. parapsilosis | 3624 | 12 | Spittle |
C. parapsilosis | 3621 | 12 | Spittle |
C. parapsilosis | ATCC22019 | - | - |
C. tropicalis | 4790 | 02 | Cassava powdery |
C. tropicalis | 4262 | 06 | Oropharyngeal secretion |
C. tropicalis | 1150 | 46 | Tongue |
C. tropicalis | 933 | 49 | Vaginal secretion |
C. tropicalis | 916 | 49 | Feces |
3.5. In vitro Antifungal Susceptibility
3.6. Animals and Preliminary Toxicological Tests
4. Conclusions
Acknowledgments
- Samples Availability: Samples of the compounds 4a–j are available from the authors.
Conflict of Interest
References and Notes
- Lopez-Martinez, R. Candidosis, a new challenge. Clin. Dermatol. 2010, 6, 178–184. [Google Scholar] [CrossRef]
- Chen, A.; Sobel, J.D. Emerging azole antifungals. Expert Opin. Emerg. Drugs 2005, 10, 21–33. [Google Scholar] [CrossRef]
- Rybak, M.J.; Akins, R.L. Emergence of methicillin-resistant Staphylococcus aureus with intermediate lycopeptide resistance: clinical significance and treatment options. Drugs 2001, 6, 1–7. [Google Scholar]
- Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 1999, 12, 40–79. [Google Scholar]
- Wei, Q.L.; Zhang, S.S.; Gao, J.; Li, W.H.; Xu, L.Z.; Yu, Z.G. Synthesis and QSAR studies of novel triazole compounds containing thioamide as potential antifungal agents. Bioorg. Med. Chem. 2006, 14, 7146–7153. [Google Scholar] [CrossRef]
- Warn, P.A.; Sharp, A.; Parmar, A.; Majithiya, J.; Denning, D.W.; Hope, W.W. Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: Mathematical modeling, importance of tissue concentrations, and impact of immune status on antifungal effect. Antimicrob. Agents Chemother. 2009, 53, 3453–3461. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, Q.; Liao, J.; Hua, H.; Yu, S.; Chai, X.; Xu, M.; Wua, Q. New triazole derivatives as antifungal agents: Synthesis via click reaction, in vitro evaluation and molecular docking studies. Bioorg. Med. Chem. Lett. 2012, 22, 2959–2962. [Google Scholar] [CrossRef]
- Ulusoy, N.; Gursoy, A.; Otuk, G. Synthesis and antimicrobial activity of some 1,2,4-triazole-3-mercaptoacetic acid derivatives. Farmaco 2001, 56, 947–952. [Google Scholar] [CrossRef]
- Demirbas, N.; Demirbas, A.; Karaoglu, S.A. Synthesis and biological activities of new 1,2,4-triazol-3-one derivatives. Bioorg. Khim. 2005, 31, 430–440. [Google Scholar]
- Bagihalli, G.B.; Avaji, P.G.; Patil, S.A.; Badami, P.S. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur. J. Med. Chem. 2008, 43, 2639–2649. [Google Scholar] [CrossRef]
- Karthikeyan, M.S.; Prasad, D.J.; Poojary, B.; Bhat, K.S.; Holla, B.S.; Kumari, N.S. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg. Med. Chem. 2006, 14, 7482–7489. [Google Scholar] [CrossRef]
- Dabak, K.; Sezer, O.; Akar, A.; Anac, O. Synthesis and investigation of tuberculosis inhibition activities of some 1,2,3-triazole derivatives. Eur. J. Med. Chem. 2003, 38, 215–218. [Google Scholar] [CrossRef]
- Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazolesas inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2011, 21, 7273–7276. [Google Scholar] [CrossRef]
- Joshi, S.; Khosla, N.; Tiwari, P. In vitro study of some medicinally important Mannich bases derived from antitubercular agent. Bioorg. Med. Chem. 2004, 12, 571–576. [Google Scholar] [CrossRef]
- Kai, H.; Hinou, H.; Nishimura, S.-I. Aglycone-focused randomization of 2-difluoromethylphenyl-type sialoside suicide substrates for neuraminidases. Bioorg. Med. Chem. 2012, 20, 2739–2746. [Google Scholar] [CrossRef]
- Holla, B.S.; Veerendra, B.; Shivananda, M.K.; Poojary, B. Synthesis, characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem. 2003, 38, 759–767. [Google Scholar] [CrossRef]
- Tiew, K.-C.; Dou, D.; Teramoto, T.; Lai, H.; Alliston, K.R.; Lushington, G.H.; Padmanabhan, R.; Groutas, W.C. Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives. Bioorg. Med. Chem. 2012, 20, 1213–1221. [Google Scholar]
- Turan-Zitouni, G.; Kaplancikli, Z.A.; Erol, K.; Kilic, F.S. Synthesis and analgesic activity of some triazoles and triazolo-thiadiazines. Farmaco 1999, 54, 218–223. [Google Scholar] [CrossRef]
- He, J.; Feng, L.; Li, J.; Tao, R.; Wang, F.; Liao, X.; Sun, Q.; Long, Q.; Ren, Y.; Wan, J.; He, H. Design, synthesis and biological evaluation of novel 2-methylpyrimidine-4-ylamine derivatives as inhibitors of Escherichia coli pyruvatedehydrogenase complex E1. Bioorg. Med. Chem 2012, 20, 1665–1670. [Google Scholar] [CrossRef]
- Oh, K.; Yamada, K.; Asami, T.; Yoshizawa, Y. Synthesis of novel brassinosteroid biosynthesis inhibitors based on the ketoconazole scaffold. Bioorg. Med. Chem. Lett. 2012, 22, 1625–1628. [Google Scholar] [CrossRef]
- Malolanarasimhan, K.; Lai, C.C.; Kelley, J.A.; Iaccarino, L.; Reynolds, D.; Young, H.A.; Marquez, V.E. Synthesis and biological study of a flavone acetic acid analogue containing an azido reporting group designed as a multifunctional binding site probe. Bioorg. Med. Chem. 2005, 13, 2717–2722. [Google Scholar] [CrossRef]
- Lee, B.Y.; Park, S.R.; Jeon, H.B.; Kim, K.S. A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Lett. 2006, 47, 5105–5109. [Google Scholar] [CrossRef]
- dos Anjos, J.V.; Sinou, D.; de Melo, S.J.; Srivastava, R.M. Synthesis of glycosyl-triazole linked 1,2,4-oxadiazoles. Carbohydr. Res. 2007, 342, 2440–2449. [Google Scholar] [CrossRef]
- Himo, F.; Lovell, T.; Hilgraf, H.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005, 127, 210–216. [Google Scholar]
- dos Anjos, J.V.; Neves Filho, R.A.W.; Nascimento, S.C.; Srivastava, R.M.; Melo, S.J.; Sinou, D. Synthesis and cytotoxic profile of glycosyltriazole linked to 1,2,4-oxadiazole moiety at C-5 through a straight-chain carbon and oxygen atoms. Eur. J. Med. Chem. 2009, 44, 3571–3576. [Google Scholar] [CrossRef]
- Wang, W.; Sheng, C.; Che, X.; Ji, H.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W. Discovery of highly potent novel antifungal azoles by structure-based rational design. Bioorg. Med. Chem. Lett. 2009, 19, 5965–5969. [Google Scholar]
- Wang, W.; Wang, S.; Liu, Y.; Dong, G.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel conformationally restricted triazole derivatives with potent antifungal activity. Eur. J. Med. Chem. 2010, 45, 6020–6026. [Google Scholar] [CrossRef]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Sherf, A.F. A method for maintaining Phytomonas sepedomica for long periods without transfer. Phytopathology 1943, 31, 30–32. [Google Scholar]
- de Hoog, G.S.; Guarro, J.; Gene, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands and Universitat Rovira i Virgili: Reus, Spain, 2000; p. 1124. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Testing of Yeasts; CLSI: Wayne, PA, USA, 2008; Volume Approved standard-third edition M27-A3.
- Malone, M.H. Pharmacological Approaches to Natural Products Screening and Evaluation. In New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity; Wagner, H., Wolf, P., Eds.; Springer-Verlag: Berlin, Germany, 1977; pp. 23–53. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). OECD Guideline for Testing of Chemicals: Acute Oral Toxicity–Up-and-Down Procedure; n° 425; OECD Publishing: Paris, France, 2001.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lima-Neto, R.G.; Cavalcante, N.N.M.; Srivastava, R.M.; Mendonça Junior, F.J.B.; Wanderley, A.G.; Neves, R.P.; Dos Anjos, J.V. Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains. Molecules 2012, 17, 5882-5892. https://doi.org/10.3390/molecules17055882
Lima-Neto RG, Cavalcante NNM, Srivastava RM, Mendonça Junior FJB, Wanderley AG, Neves RP, Dos Anjos JV. Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains. Molecules. 2012; 17(5):5882-5892. https://doi.org/10.3390/molecules17055882
Chicago/Turabian StyleLima-Neto, Reginaldo G., Nery N. M. Cavalcante, Rajendra M. Srivastava, Francisco J. B. Mendonça Junior, Almir G. Wanderley, Rejane P. Neves, and Janaína V. Dos Anjos. 2012. "Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains" Molecules 17, no. 5: 5882-5892. https://doi.org/10.3390/molecules17055882
APA StyleLima-Neto, R. G., Cavalcante, N. N. M., Srivastava, R. M., Mendonça Junior, F. J. B., Wanderley, A. G., Neves, R. P., & Dos Anjos, J. V. (2012). Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains. Molecules, 17(5), 5882-5892. https://doi.org/10.3390/molecules17055882