Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition
Abstract
:1. Introduction
2. Results and Discussion
Species | TPC | TAC | TFC |
---|---|---|---|
Antirrhinum majus | 3.49 ± 0.21 a | 5.06 ± 0.24 a | 1.78 ± 0.18 a |
Begonia boliviensis | 4.92 ± 0.16 b | 6.80 ± 0.29 b | 1.84 ± 0.20 a |
Centaurea cyanus | 4.76 ± 0.27 b | 6.81 ± 0.26 b | 1.81 ± 0.21 a |
Chrysanthemum frutescens | 2.53 ± 0.25 c | 4.24 ± 0.30 c | 1.23 ± 0.17 b |
Chrysanthemum parthenium | 2.72 ± 0.27 c | 4.21 ± 0.31 c | 1.29 ± 0.20 b |
Dianthus caryophyllus | 5.28 ± 0.41 b | 6.96 ± 0.39 b | 2.27 ± 0.20 c |
Fuchsia x hybrida | 3.45 ± 0.30 a | 5.20 ± 0.21 a | 1.66 ± 0.21 ab |
Impatiens walleriana | 4.85 ± 0.28 b | 6.89 ± 0.36 b | 1.93 ± 0.18 ab |
Rosa odorata | 5.02 ± 0.34 b | 6.85 ± 0.38 b | 2.04 ± 0.19 ac |
Tagetes patula | 4.58 ± 0.40 b | 6.70 ± 0.37 b | 1.90 ± 0.22 ac |
Tropaeolum majus | 3.31 ± 0.29 a | 5.12 ± 0.20 a | 1.35 ± 0.17 b |
Viola x wittrockiana | 5.11 ± 0.37 b | 6.65 ± 0.37 b | 1.99 ± 0.23 ac |
Species | Dry matter | Crude protein |
---|---|---|
Antirrhinum majus | 12.61 ± 0.11 a | 4.85 ± 0.27 a |
Begonia boliviensis | 14.20 ± 0.23 b | 2.78 ± 0.35 b |
Centaurea cyanus | 9.74 ± 0.20 c | 6.73 ± 0.28 c |
Chrysanthemum frutescens | 9.57 ± 0.16 c | 6.85 ± 0.45 c |
Chrysanthemum parthenium | 9.86 ± 0.35 c | 6.77 ± 0.26 c |
Dianthus caryophyllus | 11.55 ± 0.18 d | 6.89 ± 0.44 c |
Fuchsia x hybrida | 8.37 ± 0.31 e | 2.41 ± 0.31 b |
Impatiens walleriana | 14.75 ± 0.44 b | 4.60 ± 0.32 a |
Rosa odorata | 10.09 ± 0.23 c | 2.66 ± 0.30 b |
Tagetes patula | 9.68 ± 0.34 c | 2.95 ± 0.38 b |
Tropaeolum majus | 11.27 ± 0.28 d | 4.74 ± 0.19 a |
Viola x wittrockiana | 10.01 ± 0.30 c | 6.70 ± 0.21 c |
Species | Phosphorus | Potassium | Calcium | Magnesium | Sodium |
---|---|---|---|---|---|
Antirrhinum majus | 417.62 ± 11.21 a | 2,861.83 ± 112.21 a | 357.20 ± 10.30 a | 172.02 ± 7.29 a | 87.74 ± 3.42 a |
Begonia boliviensis | 202.11 ± 14.30 b | 1,842.61 ± 94.75 b | 348.73 ± 12.46 a | 149.53 ± 8.60 b | 93.34 ± 3.94 a |
Centaurea cyanus | 534.48 ± 9.85 c | 3,568.77 ± 109.62 c | 246.18 ± 17.88 b | 138.49 ± 5.95 b | 74.28 ± 2.05 b |
Chrysanthemum frutescens | 428.36 ± 7.62 a | 2,617.24 ± 101.35 a | 258.55 ± 21.44 b | 105.26 ± 8.32 c | 89.10 ± 4.50 a |
Chrysanthemum parthenium | 501.29 ± 8.12 d | 3,600.34 ± 102.14 c | 341.32 ± 13.07 a | 195.17 ± 7.15 d | 113.31 ± 3.08 c |
Dianthus caryophyllus | 531.35 ± 7.60 c | 3,544.81 ± 100.80 c | 491.89 ± 15.25 c | 186.55 ± 8.07 ad | 114.29 ± 3.17 c |
Fuchsia x hybrida | 215.46 ± 11.12 b | 1,967.30 ± 94.35 b | 239.10 ± 14.00 b | 170.71 ± 9.44 a | 125.58 ± 3.84 d |
Impatiens walleriana | 382.73 ± 10.32 e | 2,835.25 ± 86.74 a | 405.62 ± 17.26 d | 203.34 ± 5.08 d | 94.29 ± 3.77 a |
Rosa odorata | 225.17 ± 6.18 b | 1,969.11 ± 92.10 b | 275.15 ± 18.55 b | 141.83 ± 6.19 b | 76.61 ± 1.97 b |
Tagetes patula | 478.25 ± 9.24 f | 3,808.72 ± 98.56 cd | 346.85 ± 14.14 a | 205.19 ± 9.37 d | 114.32 ± 3.61 c |
Tropaeolum majus | 481.31 ± 6.82 f | 2,453.39 ± 94.73 a | 337.23 ± 18.62 a | 149.38 ± 8.57 b | 88.52 ± 4.27 a |
Viola x wittrockiana | 514.62 ± 10.32 cd | 3,964.84 ± 85.05 d | 486.44 ± 24.65 c | 190.05 ± 7.21 d | 131.97 ± 3.92 d |
Species | Iron | Manganese | Copper | Zinc | Molybdenum |
---|---|---|---|---|---|
Antirrhinum majus | 4.38 ± 0.14 a | 5.73 ± 0.29 a | 1.62 ± 0.08 a | 8.89 ± 0.94 a | 0.84 ± 0.05 a |
Begonia boliviensis | 2.65 ± 0.21 b | 4.35 ± 0.14 b | 1.94 ± 0.09 b | 4.60 ± 0.57 b | 0.62 ± 0.05 b |
Centaurea cyanus | 6.89 ± 0.25 c | 2.29 ± 0.29 c | 0.89 ± 0.08 c | 7.59 ± 1.29 a | 0.49 ± 0.05 c |
Chrysanthemum frutescens | 5.15 ± 0.32 d | 7.86 ± 0.31 d | 2.20 ± 0.07 d | 5.49 ± 0.81 b | 0.30 ± 0.06 d |
Chrysanthemum parthenium | 5.83 ± 0.15 e | 7.33 ± 0.34 d | 2.35 ± 0.08 d | 5.94 ± 0.89 ab | 0.31 ± 0.06 d |
Dianthus caryophyllus | 9.85 ± 0.25 f | 7.49 ± 0.25 d | 2.88 ± 0.09 e | 7.17 ± 1.31 a | 0.55 ± 0.05 c |
Fuchsia x hybrida | 8.12 ± 0.24 g | 4.17 ± 0.21 b | 2.70 ± 0.09 e | 11.45 ± 1.24 c | 0.71 ± 0.07 b |
Impatiens walleriana | 7.26 ± 0.16 c | 6.05 ± 0.27 a | 1.31 ± 0.10 f | 8.72 ± 1.02 a | 0.39 ± 0.06 cd |
Rosa odorata | 3.55 ± 0.18 h | 3.44 ± 0.20 e | 2.28 ± 0.10 df | 4.55 ± 0.80 b | 0.64 ± 0.06 b |
Tagetes patula | 8.72 ± 0.24 i | 7.86 ± 0.30 d | 1.09 ± 0.07 g | 13.29 ± 1.12 d | 0.37 ± 0.05 d |
Tropaeolum majus | 6.47 ± 0.13 j | 5.85 ± 0.24 a | 1.17 ± 0.11 fg | 9.07 ± 1.27 a | 0.29 ± 0.06 d |
Viola x wittrockiana | 7.29 ± 0.19 c | 7.93 ± 0.27 d | 1.95 ± 0.10 bc | 11.52 ± 1.06 c | 0.84 ± 0.07 a |
3. Experimental
Mineral element | Content in soil (mg/kg) | Mineral element | Content in soil (mg/kg) |
---|---|---|---|
Phosphorus | 51.85 | Iron | 5,360.20 |
Potassium | 156.32 | Manganese | 551.60 |
Calcium | 3,141.45 | Copper | 19.71 |
Magnesium | 295.15 | Zinc | 21.14 |
Sodium | 45.73 | Molybdenum | 3.12 |
Latin name | English name | Cultivar |
---|---|---|
Antirrhinum majus | Snapdragon | Zluty Kral |
Begonia boliviensis | Bolivian Begonia | Bonfire |
Centaurea cyanus | Cornflower | Modracek |
Chrysanthemum frutescens | Marguerite Daisy | Silver Leaf |
Chrysanthemum parthenium | Feverfew | Roya |
Dianthus caryophyllus | Clove Pink | Picotee |
Fuchsia x hybrida | Fuchsia | Autumnale |
Impatiens walleriana | Busy Lizzy | Rockapulco Purple |
Rosa odorata | Tea Rose | Ilona |
Tagetes patula | French Marigold | Bolero |
Tropaeolum majus | Nasturtium | Tom Pouce |
Viola x wittrockiana | Pansy | Fancy |
3.1. Extraction of Samples
3.2. Total Phenolic Content (TPC) Assay
3.3. Antioxidant Capacity (TAC) by the DPPH Test Assay
3.4. Total Flavonoid Content (TFC) Assay
3.5. Dry Matter (DM) and Mineral Content Assay
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
- Sample Availability: Samples of the chemical compounds and plant material are available from the authors.
References and notes
- Kopec, K. Jedle kvety pro zpestreni jidelnicku. Vyziva a Potraviny 2004, 59, 151–152. [Google Scholar]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Kopec, K.; Balik, J. Kvalitologie Zahradnickych Produktu, 1st ed; Mendel University of Agriculture and Forestry in Brno: Brno, Czech Republic, 2008; pp. 140–161. [Google Scholar]
- Yang, S.L.; Walters, T.W. Ethnobotany and the economic role of rhe Cucurbitaceae in China. Econ. Bot. 1992, 46, 349–367. [Google Scholar] [CrossRef]
- Neugebauerova, J.; Vabkova, J. Jedle kvety soucasti food stylingu. Zahradnictvi 2009, 83, 22–24. [Google Scholar]
- Kovacikova, E.; Vojtassakova, A.; Holcikova, K.; Simonova, E. Potravinarske Tabulky, 1st ed; VUP: Bratislava, Slovak, 1997; pp. 20–210. [Google Scholar]
- Upadhyay, R.K. Kareel plant: A natural source of medicines and nutrients. Int. J. Green Pharm. 2011, 5, 255–265. [Google Scholar] [CrossRef]
- Aletor, O.; Oshodi, A.A.; Ipinmoroti, K. Chemical composition of common leafy vegetables and functional properties of their leaf protein concentrates. Food Chem. 2002, 78, 63–68. [Google Scholar] [CrossRef]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Combinations of colors and species of containerized edible flowers: Effect on consumer preferences. Hortscience 2002, 37, 218–221. [Google Scholar]
- Friedman, H.; Agami, O.; Vinokur, Y.; Droby, S.; Cohen, L.; Refaeli, G.; Resnick, N.; Umiel, N. Characterization of yield, sensitivity to Botrytis cinerea and antioxidant content of several rose species suitable for edible flowers. Sci. Hortic. 2010, 123, 395–401. [Google Scholar]
- Mato, M.; Onazaki, T.; Ozeki, Y.; Higeta, D.; Itoh, Y.; Yoshimoto, Y.; Ikeda, H.; Yoshida, H.; Shibata, M. Flavonoid biosynthesis in white flowered sim carnations (Dianthus caryophyllus). Sci. Hortic. 2000, 84, 333–347. [Google Scholar]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer and professional chef perceptions of three edible species. Hortscience 2001, 36, 162–166. [Google Scholar]
- Rop, O.; Jurikova, T.; Mlcek, J.; Kramarova, D.; Sengee, Z. Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains. Sci. Hortic. 2009, 122, 545–549. [Google Scholar]
- You, Q.; Wang, B.W.; Chen, F.; Huang, Z.L.; Wang, X.; Luo, P.G. Comparison of anthocyanins and phenolics in originally and conventionally grown blueberries in selected cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Lugasi, A.; Hovari, J.; Kadar, G.; Denes, S. Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Aliment. 2011, 40, 52–64. [Google Scholar] [CrossRef]
- Prugar, J. Kvalita rostlinnych produktu na prahu tretiho tisicileti, 1st ed; VUPS: Prague, Czech Republic, 2008; pp. 280–306. [Google Scholar]
- Bimova, P.; Pokluda, R. Impact of organic fertilizers on total antioxidant capacity in head cabbage. Hortic. Sci. 2009, 36, 21–25. [Google Scholar]
- Ibrahim, T.A.; El-Hefnawy, H.M.; El-Hela, A.A. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat. Prod. Res. 2010, 24, 1537–1545. [Google Scholar] [CrossRef]
- Uma-Maheswari, S.; Mohankumar, J.B.; Uthira, L. Comparative study on antioxidant activity of organic and conventionally grown roots and tubers vegetables in India. J. Environ. Agric. Food Chem. 2012, 11, 136–147. [Google Scholar]
- Purves, W.; Sadava, D.; Orians, G.H.; Heller, H.C. Life: The Science of Biology, 7th ed; Sinauer Associates: Sunderland, MA, USA, 2004; pp. 45–90. [Google Scholar]
- Jurikova, T.; Matuskovic, J. The study of irrigation influence on nutritional value of Lonicera kamtschatica—Cultivar Gerda 25 and Lonicera edulis berries under Nitra conditions during 2001–2003. Hortic. Sci. 2007, 34, 11–16. [Google Scholar]
- Rop, O.; Jurikova, T.; Sochor, J.; Mlcek, J.; Kramarova, D. Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from Central Europe. J. Food Qual. 2011, 34, 187–194. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Jayasankar, S.; Lay, W. Variation in total phenolic and antioxidant capacity among European plum genotypes. Sci. Hortic. 2006, 108, 243–246. [Google Scholar]
- Rop, O.; Mlcek, J.; Kramarova, D.; Jurikova, T. Selected cultivars of cornelian cherry (Cornus mass L.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010, 9, 1205–1210. [Google Scholar]
- Miao, H.; Jiang, B.; Chen, S.; Zhang, S.; Chen, F.; Fang, W.; Teng, N.; Guan, Z. Isolation of a gibberelin 20-oxidase cDNA from and characterization of its expression in chrysanthemum. Plant Breeding 2010, 129, 707–714. [Google Scholar]
- Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K.; Bakrouf, A.; Magne, C.; Abdelly, C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 2009, 47, 2083–2091. [Google Scholar] [CrossRef]
- Stich, K.; Eidenberger, T.; Wurst, F.; Forkmann, G. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 1992, 187, 103–108. [Google Scholar]
- Heller, W.; Britsch, L.; Forkmann, G.; Grisebach, H. Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flower of Matthiola incana. Planta 1985, 163, 191–196. [Google Scholar] [CrossRef]
- Kader, A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Velisek, J. Chemie Potravin, 1st ed; OSSIS: Tabor, Czech Republic, 2002; pp. 252–324. [Google Scholar]
- Campbell, N.A.; Reece, J.B. Biology,, 1st ed; Computer Press: Brno, Czech Republic, 2006; pp. 840–911. [Google Scholar]
- Choi, E.M.; Hwang, J.K. Investigations of anti-inflammatory and antinociceptive activities of Piper cuceba, Physalis angulata and Rosa hybrida. J. Ethnopharmacol. 2003, 89, 171–175. [Google Scholar] [CrossRef]
- Schreiner, M.; Krumbein, A.; Mewis, I.; Ulrichs, C.; Huyskens-Keil, S. Short-term and moderate UV-B radiation efects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.). Innov. Food Sci. Emerg. 2009, 10, 93–96. [Google Scholar] [CrossRef]
- Shafaghat, A.; Larijani, K.; Salimi, F. Composition and antimicrobial activity of the essential oil of Chrysanthemum perthenium flower from Iran. J. Essent. Oil Bear. Pl. 2009, 12, 708–713. [Google Scholar]
- Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.I.; Hay, A.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef]
- UKZUZ. Data from Central Institute for Supervising and Testing in Agriculture; UKZUZ:: Brno, Czech Republic, 2008.
- Hertle, B.; Kiermeier, P.; Nickigov, M. Gartenblumen, 1st ed; Gräfe and Unzer: München, Germany, 1993; pp. 30–200. [Google Scholar]
- Brickell, C. AHS Encyclopedia of Plants & Flowers, 1st ed; Dorling Kindersley Publishing: New York, NY, USA, 2002; pp. 20–700. [Google Scholar]
- Brickell, C. A-Z Encyclopedia Garden Plants, 1st ed; DK ADULT: New York, NY, USA; New York, NY, USA, 2002; pp. 20–1080. [Google Scholar]
- SEMO. Catalog Semo, 1st ed; SEMO: Smrzice, Czech Republic, 2010.
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 51, 321–326. [Google Scholar]
- Barros, L.; Baptista, P.; Ferreira, I.C.F.R. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 2007, 45, 1731–1737. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Verset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Park, Y.S.; Jung, S.T.; Kang, S.G.; Heo, B.G.; Arancibia-Avila, P.; Toledo, F.; Drzewiecki, J.; Namiesnik, J.; Gorinstein, S. Antioxidants and protein in ethylene-treated kiwifruits. Food Chem. 2008, 107, 640–648. [Google Scholar] [CrossRef]
- Novotny, F. Metodiky Chemickych Rozboru pro Hodnoceni Kvality Odrud, 1st ed; UKZUZ: Brno, Czech Republic, 2000; pp. 15–120. [Google Scholar]
- Higson, S.P.J. Analytical Chemistry, 1st ed; Oxford University Press: Oxford, UK, 2004; pp. 30–420. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 5th ed; Iowa State University Press: Ames, IA, USA, 1968; pp. 125–230. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules 2012, 17, 6672-6683. https://doi.org/10.3390/molecules17066672
Rop O, Mlcek J, Jurikova T, Neugebauerova J, Vabkova J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules. 2012; 17(6):6672-6683. https://doi.org/10.3390/molecules17066672
Chicago/Turabian StyleRop, Otakar, Jiri Mlcek, Tunde Jurikova, Jarmila Neugebauerova, and Jindriska Vabkova. 2012. "Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition" Molecules 17, no. 6: 6672-6683. https://doi.org/10.3390/molecules17066672
APA StyleRop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., & Vabkova, J. (2012). Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules, 17(6), 6672-6683. https://doi.org/10.3390/molecules17066672