Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4
Abstract
:1. Introduction
2. Results and Discussion
2.1. Au NPs with Various Sizes
2.2. Au/Al2O3 Catalysts
2.3. Catalytic Reduction of p-Nitrophenol
Particle size (nm) | Reaction time (s) | Conversion (%) | TOF (moles·g−1·s−1) |
---|---|---|---|
1.7 | 60 | 73.0 | 1.83 × 10−2 |
3.4 | 60 | 82.5 | 2.06 × 10−2 |
5.7 | 60 | 71.3 | 1.78 × 10−2 |
8.2 | 60 | 62.3 | 1.56 × 10−2 |
3. Experimental
3.1. Chemicals
3.2. Catalyst Preparation
3.2.1. Preparation of Au NPs
3.2.2. Preparation of 1.0 wt% Au/Al2O3 Catalysts
3.3. Characterization
3.4. Catalytic Reduction of p-Nitrophenol with NaBH4
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 405–408. [Google Scholar]
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Hashmi, A.S.K. The catalysis gold rush: New claims. Angew. Chem. Int. Ed. 2005, 44, 6990–6993. [Google Scholar] [CrossRef]
- Bond, G.C.; Louis, C.; Thompson, D.T. Catalysis by Gold; Imperial College Press: London, UK, 2006. [Google Scholar]
- Takei, T.; Akita, K.; Nakamura, I.; Fujitani, T.; Okumura, M.; Okazaki, K.; Huang, J.H.; Ishida, T.; Haruta, M. Heterogeneous catalysis by gold. Adv. Catal. 2012, 55, 1–126. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported gold nanoparticles for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, X.J.; Shi, F.; Deng, Y.Q. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef]
- Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef]
- Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem. 2013, 15, 17–45. [Google Scholar] [CrossRef]
- Tsubota, S.; Nakamura, T.; Tanaka, K.; Haruta, M. Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catal. Lett. 1998, 56, 131–135. [Google Scholar] [CrossRef]
- Grunwaldt, J.D.; Kiener, C.; Wogerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids. J. Catal. 1999, 181, 223–232. [Google Scholar] [CrossRef]
- Comotti, M.; Li, W.C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924. [Google Scholar] [CrossRef]
- Yin, H.F.; Ma, Z.; Chi, M.F.; Dai, S. Activation of dodecanethiol-capped gold catalysts for CO oxidation by treatment with KMnO4 or K2MnO4. Catal. Lett. 2010, 136, 209–221. [Google Scholar] [CrossRef]
- Schwartz, V.; Mullins, D.R.; Yan, W.F.; Chen, B.; Dai, S.; Overbury, S.H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B 2004, 108, 15782–15790. [Google Scholar] [CrossRef]
- Kundu, S.; Wang, K.; Liang, H. Size-selective synthesis and catalytic application of polyelectrolyte encapsulated gold nanoparticles using microwave irridation. J. Phys. Chem. C 2009, 113, 5157–5163. [Google Scholar] [CrossRef]
- Shimizu, K.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A. Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: Mechanistic reasons for size- and support-dependent activity and selectivity. J. Phys. Chem. C 2009, 113, 17803–17810. [Google Scholar]
- Shekhar, M.; Wang, J.; Lee, W.-S.; Williams, W.D.; Kim, S.M.; Stach, E.A.; Miller, J.T.; Delgass, W.N.; Riberio, F.H. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 2012, 134, 4700–4708. [Google Scholar] [CrossRef]
- Valden, M.; Pak, S.; Lai, X.; Goodman, D.W. Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal. Lett. 1998, 56, 7–10. [Google Scholar] [CrossRef]
- Laoufi, I.; Saint-Lager, M.-C.; Lazzari, R.; Jupille, J.; Robach, O.; Garaudée, S.; Cabailh, G.; Dolle, P.; Cruguel, H.; Bailly, A. Size and catalytic activity of supported gold nanoparticles: An in Operando study during CO oxidation. J. Phys. Chem. C 2011, 115, 4673–4679. [Google Scholar]
- Esumi, K.; Satoh, K.; Torigoe, K. Interactions between alkanethiols and gold-dendrimer nanocomposite. Langmuir 2001, 17, 6860–6864. [Google Scholar] [CrossRef]
- Yazid, H.; Adnan, R.; Farrukh, M.A.; Hanid, S.A. Synthesis of Au/Al2O3 nanocrystal and its application in the reduction of p-nitrophenol. J. Chin. Chem. Soc. 2011, 58, 593–601. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Seeding growth for size control of 5—40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6282–6786. [Google Scholar] [CrossRef]
- Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S.K.; Pal, T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic processes. J. Phys. Chem. C 2007, 111, 4596–4605. [Google Scholar]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2009, 26, 2885–2893. [Google Scholar]
- Liu, L.C.; Wei, T.; Guan, X.; Zi, X.H.; He, H.; Dai, H.X. Size and morphology adjustment of PVP-stabilized silver and gold nanocrystals synthesized by hydrodynamic assisted self-assembly. J. Phys. Chem. C 2009, 113, 8595–8600. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lin, C.; Tao, K.; Hua, D.; Ma, Z.; Zhou, S. Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules 2013, 18, 12609-12620. https://doi.org/10.3390/molecules181012609
Lin C, Tao K, Hua D, Ma Z, Zhou S. Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules. 2013; 18(10):12609-12620. https://doi.org/10.3390/molecules181012609
Chicago/Turabian StyleLin, Chao, Kai Tao, Dayin Hua, Zhen Ma, and Shenghu Zhou. 2013. "Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4" Molecules 18, no. 10: 12609-12620. https://doi.org/10.3390/molecules181012609
APA StyleLin, C., Tao, K., Hua, D., Ma, Z., & Zhou, S. (2013). Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules, 18(10), 12609-12620. https://doi.org/10.3390/molecules181012609