Corncobs as a Potential Source of Functional Chemicals
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Agro-Waste Material
3.3. Extraction and Isolation Procedures
3.4. Identification of the Isolated Compounds
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Inglett, G. Corn: Culture, Processing and Products; AVI Publishing Co.: Westport, CT, USA, 1970. [Google Scholar]
- Barl, B.; Biliaderis, C.; Murray, E.; Macgregor, A. Combined chemical and enzymatic treatments of corn husks lignocellulosics. J. Sci. Food Agric. 1991, 56, 195–214. [Google Scholar] [CrossRef]
- Beall, D.; Ingram, L. Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 1992, 14, 857–862. [Google Scholar] [CrossRef]
- Hang, Y.; Woodams, E. Enzymatic production of soluble sugars from corn husks. Lebensm. Wiss. Technol. 1999, 32, 208–210. [Google Scholar]
- Hang, Y.; Woodams, E. Enzymatic enhancement of citric acid production by Aspergillus niger from corn cobs. Lebensm. Wiss. Technol. 2001, 42, 484–486. [Google Scholar]
- Rivas, B.; Moldes, A.; Dominguez, J.; Parajó, J. Lactic acid production from corn cobs by simultaneous saccharification and fermentation; A mathematical interpretation. Enzyme Microb. Technol. 2004, 34, 627–634. [Google Scholar] [CrossRef]
- Awad, A.; Chen, Y.; Fink, C.; Hennessey, T. β-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane Lipids. Anticancer Res. 1996, 16, 797–804. [Google Scholar]
- Von Holtz, R.; Fink, C.; Awad, A. β-Sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutr. Cancer 1998, 32, 8–12. [Google Scholar] [CrossRef]
- Downie, A.; Fink, S.; Awad, A. Effect of phytosterols on MDAMB-231 human breast cancer cell growth. FASEB J. 1999, 113, A333. [Google Scholar]
- Georges, P.; Sylvestre, M.; Ruegger, H.; Bourgeois, P. Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. Steroids 2006, 71, 647–652. [Google Scholar] [CrossRef]
- Kontiza, I.; Abatis, D.; Malakate, K.; Vagias, C.; Roussis, V. 3-keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa. Steroids 2006, 71, 177–181. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, L.; Ji, M.; Yuan, Y. Steroids from Bovistella radicata (Mont.). Pat. Biochem. Syst. Ecol. 2007, 35, 700–703. [Google Scholar] [CrossRef]
- Rösecke, J.; König, W. Constituents of the fungi Daedalea quercina and Daedaleopsis confragosa var. tricolor. Phytochemistry 2000, 54, 757–762. [Google Scholar] [CrossRef]
- Yu, S.; Deng, Z.; Ofwegen, L.; Proksch, P.; Lin, W. 5,8-Epidioxysterols and related derivatives from a Chinese Soft Coral Sinularia flexibilis. Steroids 2006, 71, 955–959. [Google Scholar] [CrossRef]
- Takaku, T.; Kimura, Y.; Okuda, H. Isolation of an antitumor compound from Agaricus blazei murill and its mechanism of action. J. Nutr. 2001, 1409–1413. [Google Scholar]
- Chen, Y.; Liao, C.; Chen, I. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry 2007, 68, 2101–2111. [Google Scholar] [CrossRef]
- Boldizsár, I.; Füzfai, Zs.; Tóth, F.; Sedlák, É.; Borsodi, L.; Molnár-Parl, I. Mass fragmentation study of the trimethylsilyl derivatives of arctiin, matairesinoside, arctigenin, phylligenin, matairesinol, pinoresinol and methyl arctigenin: Their gas and liquid chromatographic analysis in plant extracts. J. Chromatogr. A 2010, 1217, 1674–1682. [Google Scholar] [CrossRef]
- Heleno, V.; Silva, R.; Pedersoli, S.; Albuquerque, S.; Bastos, J.; Silva, M.; Donate, P.; Silva, G.; Lopes, J. Detailed 1H and 13C-NMR structural assignment of three biologically active lignin lactones. Spectrochim. Acta Part A 2006, 63, 234–239. [Google Scholar]
- Kim, H.; Ono, E.; Morimoto, K.; Yamagaki, T.; Okazawa, A.; Kobayashi, A.; Satake, H. Metabolic engineering of lignan biosynthesis in forsythia cell culture. Plant Cell Physiol. 2009, 50, 2200–2209. [Google Scholar] [CrossRef]
- Agrawal, P.; Thakur, R.; Bansal, M. Carbon-13 NMR of Flavonoids; Elsevier Science Publishing Company Inc.: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Seki, N.; Toh, U.; Kawaguchi, K.; Ninomiya, M.; Koketsu, M.; Watanabe, K.; Aoki, M.; Fujii, T.; Nakamura, A.; Akagi, Y.; et al. Tricin inhibits proliferation of human hepatic stellate cells in vitro by blocking tyrosine phosphorylation of PDGF receptor and its signaling pathways. J. Cell. Biochem. 2012, 113, 2346–2355. [Google Scholar] [CrossRef]
- Harborne, J.; Williams, C. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Choi, J.; Choi, Y.; Lee, J.; Noh, I.; Park, J.; Choi, W.; Choi, J. Anti-inflammatory effects of β-sitosterol-β-d-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat. Prod. Res. 2012, 26, 2340–2343. [Google Scholar] [CrossRef]
- Rho, H.; Ghimeray, A.; Yoo, D.; Ahn, S.; Kwon, S.; Lee, K.; Cho, D.; Cho, J. Kaempferol and kaempferol rhamnosides with depigmenting and anti-Inflammatory properties. Molecules 2011, 16, 3338–3344. [Google Scholar] [CrossRef]
- Vauzour, D.; Corona, G.; Spencer, P. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch. Biochem. Biophys. 2010, 501, 106–111. [Google Scholar] [CrossRef]
- Trnková, L.; Boušová1, I.; Kubíček, V.; Dršata, J. Binding of naturally occurring hydroxycinnamic acids to bovine serum albumin. Nat. Sci. 2010, 2, 563–570. [Google Scholar]
- Sample Availability: Samples of the compounds β-sitosterol, β-sitosteryl-β-d-glucoside, tricin, kaempferol, 5α,8α-epidioxyergosta-6,22-dien-3β-ol, and p-coumaric acid are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ashour, A.; Amer, M.; Marzouk, A.; Shimizu, K.; Kondo, R.; El-Sharkawy, S. Corncobs as a Potential Source of Functional Chemicals. Molecules 2013, 18, 13823-13830. https://doi.org/10.3390/molecules181113823
Ashour A, Amer M, Marzouk A, Shimizu K, Kondo R, El-Sharkawy S. Corncobs as a Potential Source of Functional Chemicals. Molecules. 2013; 18(11):13823-13830. https://doi.org/10.3390/molecules181113823
Chicago/Turabian StyleAshour, Ahmed, Mohamed Amer, Amani Marzouk, Kuniyoshi Shimizu, Ryuichiro Kondo, and Saleh El-Sharkawy. 2013. "Corncobs as a Potential Source of Functional Chemicals" Molecules 18, no. 11: 13823-13830. https://doi.org/10.3390/molecules181113823
APA StyleAshour, A., Amer, M., Marzouk, A., Shimizu, K., Kondo, R., & El-Sharkawy, S. (2013). Corncobs as a Potential Source of Functional Chemicals. Molecules, 18(11), 13823-13830. https://doi.org/10.3390/molecules181113823